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A B S T R A C T

A recently proposed method based on the spectral similarity-enhanced Markov chain random field cosimulation
(SS-coMCRF) model has provided a practical approach for estimating both horizontal and vertical urban ex-
pansion of megacities using Landsat images. Estimating vertical urban growth – the area change of mid-rise or
taller buildings (MTBs) – makes it possible to gain some new insights into the urban expansion of megacities.
This study makes use of the new approach to examine the horizontal and vertical urban expansion of three
capital megacities (Beijing, Seoul, and Tokyo) in East Asia during the late 1980s to the mid-2010s. In contrast to
previous studies that only assessed horizontal urban growth, which usually showed almost no increase in urban
area in some highly developed cities, this study indicates some different findings: (1) Both horizontal and
vertical urban expansion had been happening in the three megacities during the studied period, especially with
respect to vertical urban expansion. During the studied period there were 20.7 km2, 11.3 km2, and 6.8 km2 MTB
area increases in Beijing, Seoul, and Tokyo, respectively. (2) Different cities showed some differences in growth
patterns, mainly because they were at different urban development stages and impacted by different local si-
tuations in terms of geography, population, and development policies. (3) A similarity is that the three mega-
cities all tended to horizontally expand initially and then grow vertically in the already developed areas. This
study may provide a useful new perspective on the urban expansion of megacities.

1. Introduction

The number of megacities across the world increased 10–36 be-
tween 1990 and 2016 (United Nations, 2015). One third of these
megacities are located in East Asia, with 248 million dwellers. East Asia
(including the countries and regions of China, Hong Kong, Japan,
Macau, Mongolia, North Korea, South Korea, and Taiwan) is one of the
world’s rapidly urbanizing regions, with almost 20 million people
moving into urban areas every year during the time period between
2000 and 2010 (Frolking, Milliman, Seto, & Friedl, 2013; World Bank
Group, 2015). Because of the constant flow of people into urban areas
in this region every year, continuing rapid urbanization is expected
(Angel, Parent, Civco, Blei, & Potere, 2011). Urbanization has resulted
in many socio-economic and environmental problems (Chung, Choi, &
Yun, 2004; Civerolo et al., 2007; Kim, 2010; Kim & Kim, 2011; Lee &
Choe, 2011). Therefore, governments across the world have been taking
strict measures to regulate urban expansion. However, restraining

urban growth may not always yield positive results because the real
problem is the pattern of growth rather than growth itself (Cho, 2002).
Urban forms and spatial patterns significantly impact socio-economic,
political, and urban environmental conditions (Alberti, 2005; Kontgis
et al., 2014; Luck & Wu, 2002; Schneider, Chang, & Paulsen, 2015;
Schneider et al., 2015; Stone, 2008; Sung & Oh, 2011). It is the socio-
economic system and the stage of urban development that make urban
areas and their spatial patterns clearly different amongst different re-
gions and countries (Bagan & Yamagata, 2014; Murakami, Zain,
Takeuchi, Tsunekawa, & Yokota, 2005; Schneider & Mertes, 2014). For
example, urban residents in East Asia are more likely to live in mid-rise
or taller buildings (MTBs) that are as close to urban centers as possible,
while urban dwellers in North America generally tend to live in single
family houses in suburban areas (Bagan & Yamagata, 2014). Therefore,
it is important to understand the particular spatial patterns of urban
growth in the megacities of East Asia for better city planning and urban
sustainability research (Han, Hayashi, Cao, & Imura, 2009).
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Remote sensing (RS) technology has been a powerful tool to study
urbanization (Montgomery, 2008; Schneider, 2012). Many analyses on
urban growth, particularly horizontal urban growth, have been con-
ducted using a variety of spatial analysis methods, RS techniques, and

data at various scales. At the global scale, Huang, Lu, and Sellers (2007)
compared the urban forms of 77 metropolitan areas all over the world.
Angel et al. (2011) mapped all cities with a population of more than
100,000 in 2000 and then projected the urban areas from 2000 to 2050.

Fig. 1. The Landsat false color images for (a) Beijing, (b) Seoul, and (c) Tokyo at three time points during the studied period from the late 1980s to the mid-2010s.
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In Taubenböck et al. (2012), the urbanization of 27 megacities across
the world was mapped and analyzed across a time period of about
40 years. At the regional scale, Taubenböck, Wegmann, Roth, Mehl, and
Dech (2009) measured and analyzed the urban footprints of the 12
largest urban agglomerations in India using absolute indices and
landscape metrics. By comparing the area changes of impervious sur-
faces in megacities in China and the U.S.A., Kuang, Chi, Lu, and Dou
(2014) found that infilling mainly occurred in megacities in the U.S.A.,
while edge-expansion is the dominant form of urban expansion in
Chinese cities. At the local scale, Hara, Takeuchi, and Okubo (2005)
investigated the micro-scale transformation from agricultural landscape
to urban landscape in Bangkok using aerial photographs. Yu and Ng
(2007) applied an integrated method of landscape metrics and gradient
analysis to assess the spatiotemporal changes of urban expansion with a
case study of Guangzhou. Hung, Chen, and Cheng (2010) quantitatively
compared the urban land cover patterns of Tokyo, Kyoto, and Taipei
with ALOS RS data. Taubenböck et al. (2014) tracked the urbanization
process of the Hong Kong-Shenzhen-Guangzhou mega-region with the
use of spatial metrics.

Some studies have been conducted to detect vertical urban expan-
sion using high resolution RS images. For example, multi-temporal
very-high resolution (VHR) RS images were used to identify changes of
individual buildings (Doxani, Karantzalos, & Tsakiri-Strati, 2012;
Leichtle, Geiß, Wurm, Lakes, & Taubenböck, 2017; Pan, Zhao, Chen,
Liang, & Sun, 2008). Yu, Liu, Wu, Hu, and Zhang (2010) developed an
automatic object-based method to identify building objects and extract
various building information based on high-resolution airborne LiDAR
data. Zhang (2015) extracted three-dimensional (3-D) building in-
formation from Quickbird images to investigate the change of urban 3-
D morphology. However, previous studies of urban change analysis the
highest resolution images of individual buildings remain limited for
previous studies of urban change analysis due to only recent data
availability, and at the same time they remain at the level of small-area
case studies. In addition, only a few studies of spatial pattern analysis of
urbanization considered both horizontal and vertical urban expansion.
For example, Wurm, Taubenböck, Esch, Fina, and Siedentop (2013)
combined historical two-dimensional (2-D) urban change and a current
3-D city model derived from LiDAR to analyze the relationship between
horizontal urban growth and vertical urban growth, but with a limita-
tion that vertical urban expansion can only be measured in areas that
have been part of horizontal urban expansion. Salvati, Zitti, and
Sateriano (2013) identified the spatial pattern of urban growth in the
Athens metropolitan area, which has been shifting from vertical growth
to horizontal growth since the 1990s, using building height survey re-
cords. Frolking et al. (2013) used DMSP/OLS nighttime light data for
measuring horizontal urban growth and used SeaWinds microwave
backscatter power return data for detecting vertical urban growth in
100 cities worldwide.

Recently, based on the spectral similarity-enhanced Markov chain
random field cosimulation (SS-coMCRF) model for land cover post-
classification (Li et al., 2015; Zhang, Li, Zhang, & Li, 2017), Zhang, Li,

Zhang, and Ouimet (2017) further proposed an integrated framework
for detecting both horizontal and vertical urban expansion using
medium resolution Landsat images, with an overall identification ac-
curacy of 78% in a case study of Guangzhou. The vertical urban ex-
pansion was represented by the detected area of MTBs based on their
shadows in Landsat images. By utilizing the integrated framework, this
study aims to explore and analyze the spatial patterns of horizontal and
vertical urban expansion of three megacities in East Asia: Beijing, Seoul,
and Tokyo, from the late 1980s to the mid-2010s. The intention of this
study is to provide some answers to the following questions: (1) Has the
urban growth of megacities in East Asian developed countries stag-
nated? (2) What are the similarities and differences in spatial patterns
of horizontal and vertical urban growth between the studied mega-
cities? The main novelties of this study are that (1) it provides some
new historical information and insight about the urban expansion of
three megacities in East Asia (i.e., Beijing, Tokyo, and Seoul) from the
perspective of vertical urban expansion, and (2) it also provides a
practical experiment of conducting horizontal and vertical urban
change analysis at the scale level of a megacity over a long time period
(approximately 30 years).

2. Study areas and data

2.1. Study areas

Three megacities were chosen for this study from East Asian coun-
tries: Beijing, Seoul, and Tokyo (Fig. 1). These megacities, as defined by
administrative boundaries, were investigated in order to match corre-
sponding demographic and geographical data (Table 1). Beijing is the
capital of China, located in the North China Plain. It includes six main
urban districts and ten suburban and rural districts. The main urban
area of Beijing (i.e., the six main urban districts) was selected for our
analysis. It had a population of 12.76 million over a land area of
1364.28 km2 in 2014 (Beijing Statistical Bureau, 2015). Seoul is the
capital and the most populous city of South Korea. It includes twenty-
five districts. It has a population of 10.30million, accounting for
around 20% of the total population of South Korea, with a land area of
606.97 km2 (Seoul Statistics, 2016). The entire area was selected for our
analysis. As the capital and the most populous city of Japan, Tokyo
consists of the city of Tokyo, Tama Area, Nishi-Tama District, and Is-
lands. Twenty-three special wards of the city of Tokyo and twenty-six
cities of the Tama Area were selected as our study area, with the total
population exceeding 13.29million and a land area of 1402.32 km2

(Statistics of Tokyo, 2016). These three study areas were selected be-
cause they are among the largest megacities in East Asia and also re-
present megacities at different urbanization stages (i.e., Beijing is in the
stage of fast urbanization; Seoul is in the stage of reurbanization; Tokyo
is in the stage of suburbanization). Analyzing the spatial patterns of
horizontal and vertical urban expansion can provide valuable insights
for urban planning and urban sustainability of current and potential
megacities in East Asia.

Table 1
Description of selected megacities.

City name Study area
(km2)

Population (106 persons by year) Names of selected districts for each megacity

Around 1988 Around 2000 Around 2014

Beijing 1364.28 6.45 8.69 12.76 Dongcheng, Xicheng, Haidian, Chaoyang, Fengtai, and Shijingshan
Seoul 606.97 10.90 10.28 10.30 Gangdong, Songpa, Gangnam, Seocho, Gwanak, Dongjak, Yeongdeungpo, Geumcheon, Guro,

Gangseo, Yangcheon, Mapo, Seodaemun, Eunpyeong, Nowon, Dobong, Gangbuk, Seongbuk,
Jungnang, Dongdaemun, Gwangjin, Seongdong, Yongsan, Jung, and Jongno

Tokyo 1402.32 11.75 11.98 13.29 Chiyoda, Chuo, Minato, Shinjuku, Bunkyo, Taito, Sumida, Koto, Shinagawa, Meguro, Ota, Setagaya,
Shibuya, Nakano, Suginami, Toshima, Kita, Arakawa, Itabashi, Nerima, Adachi, Katsushika,
Edogawa, Hachioji, Tachikawa, Musashino, Mitaka, Ome, Fuchu, Akishima, Chofu, Machida,
Koganei, Kodaira, Hino, Higashimurayama, Kokubunji, Kunitachi, Fussa, Komae, Higashiyamato,
Kiyose, Higashikurume, Musashimurayama, Tama, Inagi, Hamura, Akiruno, and Nishitokyo
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2.2. Data

Spatial data used in this study include geographic information
system (GIS) data, RS data, and expert-interpreted data. GIS data are
administrative boundary shapefiles for study areas. We obtained the
administrative boundary shapefiles of Beijing and Seoul from ArcGIS
(https://www.arcgis.com/home/item.html), and the shapefile of Tokyo
from National Land Numerical Information Download Service of Japan
(http://nlftp.mlit.go.jp/ksj-e/gml/gml_datalist.html). All of these GIS
data were checked and corrected if there were mistakes or some in-
formation was missing. Finally, only selected districts of each megacity
were merged as the corresponding study area.

In this study, three sets of Landsat series images were acquired via
the EarthExplorer from U.S. Geological Survey (http://earth-
explorer.usgs.gov/), among which each set has three scenes selected for
around 1988, around 2000, and around 2014, acquired by Landsat 5
TM sensor, Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor,
and Landsat 8 Operational Land Imager (OLI) sensor, respectively
(Fig. 1, Table 2). For each scene, six commonly used channels, blue,
green, red, near infrared (NIR), short-wave infrared 1 (SWIR 1), and
short-wave infrared 2 (SWIR 2), were composited and used for pre-
classification (note that pre-classification is one of the required steps for
using the SS-coMCRF-based integrated framework for detecting both
horizontal and vertical urban expansion, as explained in the Section 3).
Four land cover classes (built-up area, vegetation, bare land, and wa-
terbody) were considered, besides the shadow class in pre-classification
stage, along the lines of Zhang, Li, Zhang, and Ouimet (2017).

As a MCRF-based model, the use of SS-coMCRF for performing post-
classification requires expert-interpreted data. Therefore, an expert-in-
terpreted sample dataset of pixel labels for the four land cover classes
(i.e., built-up area, vegetation area, waterbody, and bare land) was
discerned for each study area at each time point (Li et al., 2015; Zhang,
Li, & Zhang, 2016; Zhang, Li, Zhang, & Li, 2017). Correspondingly, nine
expert-interpreted sample datasets were obtained from the selected
Landsat images and other data sources (e.g., Google Earth history
imagery), as given in Table 2. Please note that expert-interpreted
sample data are different from training data for pre-classification be-
cause they were interpreted from multiple sources instead of only the
corresponding optical RS images used for pre-classification. Correctness
is the major concern for expert-interpreted sample data for post-clas-
sification. However, reflecting the spectral situations of land cover
classes in the RS images for pre-classification is the major concern for
training data. Additional details concerning expert-interpreted sample
data can be found in Li et al. (2015), Zhang et al. (2016), and Zhang, Li,
Zhang, and Li (2017). The validation data are also expert-interpreted
sample data, and they are used for overall accuracy assessment of all
land cover classes.

3. Methods

3.1. The SS-coMCRF-based integrated framework

The SS-coMCRF-based integrated framework (Zhang, Li, Zhang, &
Ouimet, 2017) has shown to be one (and possibly the only) effective
method for detecting both horizontal and vertical urban growth from
medium resolution imagery, with valuable detection results at the
megacity scale. The SS-coMCRF model (Zhang, Li, Zhang, & Li, 2017) is
an extension of the Markov chain random field cosimulation (coMCRF)
model (Li et al., 2015) based on the Markov chain random field (MCRF)
theory (Li, 2007; Li & Zhang, 2008). It was developed for reducing the
smoothing effect of the coMCRF model for improving land cover clas-
sification as a land cover post-classification method (Zhang et al.,
2016). As detailed in the flowchart of Fig. 2, the integrated framework
comprises the following major steps (Zhang, Li, Zhang, & Ouimet,
2017): pre-classification, post-processing, shadow detection, MTB esti-
mation, accuracy assessment, and change analysis:

(1) Pre-classification. The widely-used support vector machine (SVM)
classifier was used in this study to produce pre-classified images
from the Landsat images. The shadow class and the waterbody class
were then merged as one waterbody class in the pre-classified
images for further post-classification operations using the SS-
coMCRF model.

(2) Post-processing. The SS-coMCRF model was used to perform post-
classifications to improve the pre-classified land cover data by in-
tegrating expert-interpreted data, spatial correlation information,
and pre-classified land cover data together through MCRF cosimu-
lation. In this study, 100 simulated realizations were produced in
each post-classification operation, and then an optimal classifica-
tion map was further obtained based on the maximum probabilities
estimated from the 100 simulated realizations. The expert-inter-
preted validation data was used to estimate the accuracy of the
optimal classification map in order to make sure it was accurate
enough for shadow detection in the next step.

(3) Shadow detection. Shadow detection is based on an assumption
that waterbodies from pre-classification which are present in built-
up areas from post-classification are supposed to be shadows.
During pre-classification, most shadows are usually misclassified as
waterbodies because of spectral confusion between what constitutes
a shadow versus a waterbody, particularly in the central area of a
large city where more MTBs exist. A majority of those mis-
classifications are corrected after post-processing with SS-coMCRF.
By overlap analysis, shadows misclassified in the pre-classification
step are distinguished from waterbodies: First, all waterbodies in a
pre-classified image are extracted as the waterbody class. Second,
each waterbody object is then reclassified as a shadow object if it is
located in the built-up areas of the corresponding post-classification
map.

(4) MTB estimation. A morphological operator based on spatial logic

Table 2
Description of used Landsat images and corresponding expert-interpreted land cover sample data.

City name Landsat sensor type Image acquisition date Path Row Sun elevation angle (°) Sun azimuth angle (°) Sample data (pixel labels)

Beijing Landsat 5 TM 11/18/1989 123 32 26.0 153.4 4787
Landsat 7 ETM+ 12/29/2001 123 32 22.9 156.8 4039
Landsat 8 OLI 12/25/2014 123 32 23.8 160.1 6094

Seoul Landsat 5 TM 11/14/1988 116 34 29.8 153.4 3517
Landsat 7 ETM+ 01/29/2002 116 34 29.1 150.7 3743
Landsat 8 OLI 12/27/2015 116 34 26.1 158.8 3528

Tokyo Landsat 5 TM 12/01/1988 107 35 27.3 153.2 3717
Landsat 7 ETM+ 12/08/1999 107 35 28.1 158.4 4177
Landsat 8 OLI 12/09/2014 107 35 28.7 160.1 4377
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reasoning was used to estimate high-rise building areas from de-
tected shadows from the last step according to the spatial re-
lationships among the sun, the satellites, and the buildings. The
idea of this morphological operator is to construct the spatial logic
relationship between a shadow and its corresponding MTB; that is,
a pixel (or a group of pixels as an object) is considered an MTB if a
shadow occurs as its neighbor in the dark side of the building.

(5) Accuracy assessment. A confusion matrix was used to assess the
accuracy of each post-classification map with the validation data
(also expert-interpreted sample data). Accuracy assessment was
only conducted for the 2014 MTB estimation because of the lack of
available high resolution imagery. Around 6% of the total estimated
MTB areas were selected and manually compared to reference high
resolution imagery from multiple sources (including Google Maps,
Bing Maps, Baidu Maps, etc.).

(6) Change analysis. Grid cell analysis, a promising method for visua-
lizing urban growth patterns (Bagan & Yamagata, 2012, 2014), was
used in this study for analyzing built-up areas, MTBs, urban hor-
izontal growth, urban vertical growth, and their spatial patterns. In
order to match the spatial resolution of used channels of Landsat
images (i.e., 30m×30m), grid cell analysis was conducted at the
resolution of 990m×990m (i.e., 33×33=1089 Landsat image
pixels). By overlaying analysis, the numbers of 30m×30m built-
up areas and MTB pixels in each grid cell are counted and the
proportion of built-up areas and MTBs are calculated and assigned
to the grid cell of the corresponding empty raster data layer. By
conducting overlap subtraction between results for different years,
horizontal spatial-temporal changes in built-up areas, vertical
changes in MTB areas, and the transition from non-MTB areas to
MTB areas can be calculated and visualized.

With the use of the integrated framework on the cropped Landsat
images, high-quality land cover maps and MTB maps of each study area
at three points in time were generated.

In order to minimize the overestimation of urban areas due to mixed
pixels and poor image quality, we assumed that built-up areas are al-
ways spatially expanding rather than sometimes shrinking (Taubenböck
et al., 2012, 2014). Therefore, we modified a post-classification map for
an earlier time by judging a built-up area pixel to be true only if the
pixel at the same location is in a built-up area in a post-classification
map for a later time (Fig. 2: Post-processing). Similarly, vertical urban
expansion was assumed to be unidirectional, which means the total
number of MTB pixels within a grid cell in an earlier year is always
smaller than the total number of MTB pixels within the same cell in a
later year. Such treatments eliminated the possible existence of large-
scale demolishment of built-up areas and high buildings.

3.2. Gaussian kernel density

In this study, a kernel-density estimation with Gaussian kernels
from the Statistical functions in the SciPy module (a Python-based
open-source software, see Jones, Oliphant, & Peterson, 2016) was used
to visualize and analyze the distributional distance of horizontal and
vertical urban growth to a city center, with an automatic bandwidth
determination based on Scott’s Rule. High Gaussian kernel density in-
dicates a high level of likelihood of a certain amount of urban expan-
sion occurring in a certain distance from a city center, and vice versa.

Kernel density estimation is a well-known way to estimate the
probability density function of a random variable in a non-parametric
way (Jones et al., 2016; Lampe & Hauser, 2011; Scott, 2015). Given
that (x1, x2, …, xn) (x can be a 1-D array or a 2-D array) is a univariate

Fig. 2. A flowchart for illustrating the whole process of detecting and analyzing horizontal and vertical urban growth performed in this study.
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independent and identically distributed sample from a distribution with
a density ƒ, the kernel density estimator ̂f x( )h is:
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where K is the kernel, a non-negative function that integrates to one; n
is the sample size; h is the bandwidth; x is a 2-D array (urban growth,
distance to city center).

3.3. Relative frequency distribution

In this study, relative frequency distribution was used to analyze the
transition from non-MTB areas to MTB areas, where data variable (m)
represents MTB increase in a time period and event (i) represents the
percentage range of built-up areas in grid cells at the beginning of the
time period (i.e., 0–10%, 10–20%, etc.).

The relative frequency distribution (r) of a data variable (m) is a
summary of the frequency proportion in a collection of non-overlapping
categories (Yau, 2012):

Fig. 3. Boundaries of developable spaces for horizontal and vertical urban expansion in Beijing, Seoul, and Tokyo in the late 1980s. (a), (b), and (c): Landsat false
color images with manually-drawn boundaries of developable areas by excluding mountains and waterbodies for Beijing in 1989, Seoul in 1988, and Tokyo in 1988,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Accuracy assessment for land cover post-classification and MTB estimation.

City name Year Number of validation
data

Overall accuracy
(%)

Kappa coefficient Correctly classified samples/Total
validation samples

Number of estimated MTB
patches

MTB accuracy (%)

Beijing 1989 798 74.8 0.632 – – –
2001 674 78.6 0.655 – – –
2014 1015 81.1 0.654 630/676 11,766 93.2

Seoul 1988 502 93.4 0.854 – – –
2002 535 94.6 0.886 – – –
2015 505 94.5 0.873 433/475 7731 91.2

Tokyo 1988 620 93.4 0.876 – – –
1999 697 94.5 0.896 – – –
2014 876 94.4 0.889 271/331 6613 81.9

“–” indicates no available data.
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where mi is the value of m for event i;∑ = mi
n

i1 is the cumulative value of
m for all events; n is the total number of events (i.e., 10 in this study, see
Fig. 7).

3.4. Developable spaces analysis

To investigate the impact of developable spaces on horizontal and
vertical urban growth in each megacity, we manually drew the
boundaries of developable areas based on the boundaries of the study
areas by excluding mountains and waterbodies (Fig. 3). Developable
spaces are usually defined as areas that can be developed into re-
sidential, commercial, or other developments under regulations, in-
cluding open spaces, residential areas, etc. In this analysis, developable
spaces for horizontal urban growth include areas of bare land and ve-
getation; developable spaces for vertical urban growth include built-up
areas, bare land, and vegetation, but exclude buffered MTBs (i.e., each
MTB and its surrounding one pixel-length buffer area) in built-up areas.
A length of one pixel was chosen for the buffer based upon two sim-
plifying assumptions: (1) floor area ratio (FAR) is 100%; (2) all esti-
mated MTB pixels are 10-story buildings, which means each pixel oc-
cupies 9 surrounding pixels as the site area for the building. In fact, the
heights of buildings vary, which can be 5-stories tall or up to 100-stories
tall in estimated MTBs from Landsat images in this study. According to
the Japanese Building Standard Law and related regulations, FAR for
medium-high residential zones ranges from 100 to 500% and for
commercial zones ranges from 200 to 1300%, respectively (Hasegawa,
2013).

4. Results

4.1. Validation

For Seoul and Tokyo, the land cover classification overall accuracies
and Kappa coefficients after post-classification are all above 93% and
0.85, respectively (Table 3). Beijing has relatively low land cover
classification overall accuracies, ranging from 74.8% to 81.1%, with the
corresponding Kappa coefficient ranging from 0.632 to 0.655 (Table 3).
This can be explained by the complexity of Beijing’s suburban land-
scapes. For example, in the suburban area of Beijing, urban growth is
not always unidirectional as assumed. A large amount of land cover
misclassifications in Beijing, caused by the bi-directional conversion
between bare land and built-up areas, was observed. Additionally, due
to the preparation for the 2008 Beijing Summer Olympics, Beijing
transformed a large area of built-up land into green spaces and city
parks. Despite this, urban horizontal growth patterns of Beijing are
useful, because most of the misclassified shadows (misclassified into
waterbodies) in its urban areas were corrected by post-classification for
MTB estimation (Zhang, Li, Zhang, & Ouimet, 2017).

About 5–6% of estimated MTB patches were randomly selected for
validation. For example, in Beijing, 676 out of the 11,766 estimated
MTB patches were chosen and visually validated with reference to high-
quality RS images (e.g., ESRI world imagery) (Table 3). The accuracies
of detected MTBs around 2014 for the three megacities range from
81.9% to 93.2% (Table 3). The accuracy assessment for MTBs around
1988 and around 2000 was not conducted due to the lack of reference
high resolution images. However, their accuracies should be close to the
results of around 2014 because of the approximately similar sun ele-
vation angles used for image selection (Zhang, Li, Zhang, & Ouimet,
2017).

Fig. 4. Horizontal expansion of built-up areas. (a): Beijing from 1989 to 2014; (b): Seoul from 1988 to 2015; (c): Tokyo from 1988 to 2014.
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4.2. Horizontal and vertical urban expansion

Fig. 4 shows the horizontal urban growth patterns and urban growth of
the three study areas during the late 1980s to the mid-2010s, and Fig. 5
shows the spatial patterns of MTBs in the three study areas on three se-
lected dates during the studied period. For the period from 1989 to 2014,
the total estimated built-up area in Beijing increased from 535.36 km2 to
707.79 km2, the greatest increment among the studied cities (Table 4). The
increase mainly occurred during 2001–2014 in the rural-urban fringes
(Fig. 4(a)). With respect to vertical urban growth, 9.77 km2 and 10.93 km2

of MTB increases happened in Beijing during 1989–2001 and 2001–2014,
respectively, at an average annual change rate of 0.82 km2/year (Table 4),
along with outward horizontal urban sprawl (Fig. 5(a)). Compared to

Beijing, Seoul experienced slower horizontal urbanization progress during
a similar period, especially in the period from 2002 to 2015 (Table 4), with
most of its increase occurring in the western and southeastern outskirts of
the city and less of the increase occurring inside the city (Fig. 4(b)). During
the studied period of 1988–2015, vertical urban growth in Seoul took
place across the whole city from its center to its periphery (Fig. 5(b)), and
the vertical growth was particularly fast between 2002 and 2015
(Table 4). In contrast to Beijing and Seoul, Tokyo had relatively stable and
small horizontal urban expansion during the studied period (Table 4),
which mainly occurred in its western region and southeastern corner
(Fig. 4(c)). Most MTB increase in Tokyo took place in its western region
and the surrounding areas of the Imperial Palace between 1988 and 1999
(Fig. 5(c) and Table 4).

Fig. 5. The spatial distribution maps of mid-rise or taller buildings (MTBs) in Beijing, Seoul, and Tokyo in different years. (a): MTBs in Beijing in 1989, 2001, and
2014; (b): MTBs in Seoul in 1988, 1999, and 2015; (c): MTBs in Tokyo in 1988, 1999, and 2014.
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4.3. Spatial analysis

4.3.1. Distributional distance of horizontal and vertical urban growth to city
center

In Fig. 6, the intensity diagrams of horizontal and vertical urban
growth versus the distance from the corresponding city center (i.e., the
Forbidden City in Beijing, Gyeongbokgung Palace in Seoul, and the
Imperial Palace in Tokyo) indicate that both built-up areas and MTB
areas in the studied megacities increased during the entire study period
at different speeds. Overall, Beijing experienced the most intense hor-
izontal and vertical urban growth, with an outward expanding trend
which mainly occurred in intermediate areas of the city compared to
the other two cities (Fig. 6(a), (d), (g), and (j)). Seoul had a similar
pattern as Beijing had, but with less growth and without an obvious
outward trend (Fig. 6(b), (e), (h), and (k)). Tokyo experienced the least
urban growth but its growth tended to be evenly distributed (Fig. 6(c),
(f), (i), and (l)).

To be more specific, in Beijing, built-up areas increased quickly
from 5 km distance outward till the peak at around 15 km distance for
the period from 1989 to 2001 (Fig. 6(a)), with a large amount of the
increase occurring between 10 km and 25 km. In the following years
(from 2001 to 2014), a large number of grid cells with intensive in-
creases in built-up areas occurred within the range of 15 km–30 km
from the city center, while a large number of grid cells with intense but
small increases in built-up areas occurred between 10 km and 20 km,
similar to the last period (Fig. 6(d)). The intense but small increases can
be understood as an infilling urbanization process. Different from
horizontal urban growth, most grid cells with a large increase in MTB
areas occurred in the 5–15 km range, and then expanded to longer
distances (to 10 km and even 20 km) (Fig. 6(g) and (j)). In addition, the
greater value ranges of the increases in built-up areas (200–800 pixels)
and MTB areas (20–80 pixels) show that there was an outward ex-
panding trend (Fig. 6(a), (d), (g), and (j)), which indicates that intense
urbanization and infilling urbanization processes tended to spread out
from the center.

In the urban area of Seoul, widespread urban growth happened in
both horizontal and vertical dimensions (Fig. 6(b), (e), (h), and (k)). For
the entire study period, most urban growth occurred within the
5–15 km range. Intense horizontal urban growth occurred in the
10–17 km range during 1988–2002 and in the 12–17 km range during
2002–2015; growth in the first period was much stronger than in the
second period, which may be explained by the high rate of urbanization
and limited city size. MTB area growth mainly happened in the range of
5–15 km, and the growth in the second period was much stronger than
in the first period (Fig. 6(h) and (k)).

Different from the two megacities described above, the horizontal
urban growth in Tokyo occurred within two distance ranges, 5–15 km
and 30–50 km, (Fig. 6(c) and (f)), with the first range representing the

surrounding areas (mainly the southeastern corner) of the city center
and the second range representing the western region of the city.
During the study period, horizontal urban growth mainly occurred in
the second range. In contrast, MTB growth in Tokyo mainly took place
around the city center in a range of 0–20 km (around the first range),
although low intensity MTB growth occurred in the whole city over the
two periods (Fig. 6(i) and (l)).

4.3.2. Transition from non-MTB areas to MTB areas
Fig. 7 shows the transition status from non-MTB areas to MTB areas

in 990m×990m grid cells under different urbanization situations
(i.e., different built-up area densities). Overall, MTBs tended to be built
in highly urbanized areas (e.g., where built-up areas account for
90–100% of the total area of a grid cell) (Fig. 7). In Beijing, the increase
of MTBs during 1989–2001 mainly occurred to renew old built-up areas
with low buildings during an urban renewal process (Fig. 7(a)). How-
ever, the increase of MTBs in the period of 2001–2014 had relatively
larger proportions occurring in less urbanized areas (Fig. 7(d)), showing
an outward expanding trend (Fig. 5(a)); this feature may be explained
by the relatively low development density of Beijing in 1989 compared
with the other two cities (Figs. 4 and 5). Compared to the period of
2002–2015, the increase of MTBs in Seoul during 1988–2002 had a
relatively larger proportion occurring in less urbanized areas
(Fig. 7(b)), which illustrates that the horizontal urban expansion pro-
cess in Seoul during that period took place with a relatively larger
proportion being in the form of MTBs. During the period of 2002–2015,
the increase of MTBs in Seoul tended to occur in more urbanized areas
(Fig. 7(e)). Tokyo was already well-urbanized and densely developed
before 1990 and thus had very limited horizontal expansion during the
two studied periods (Fig. 4(c)). Therefore, vertical urban growth in
Tokyo mainly happened in high-density development areas (Fig. 7(c)
and (f)).

4.3.3. Developable spaces for horizontal and vertical urban growth
Fig. 8 shows the developable spaces for horizontal and vertical

urban expansion in the three megacities in the late 1980s, that is, the
original statuses of urban expansion in this study. It can be seen that
while Beijing still had a large area of developable space for horizontal
urban growth in 1989, Seoul and Tokyo had already been almost fully
developed, with only a very small area of developable space left for
horizontal urban expansion in 1988 (see light green areas in Fig. 8(a),
(c), and (e)). While all three cities still had large developable space for
MTBs in the late 1980s (see dark green areas in Fig. 8(b), (d), and (f)),
very high buildings may not have been allowed to be built due to ex-
isting local policies in some areas, such as the area surrounding the
Forbidden City in Beijing. Fig. 9 shows that all the studied megacities
had more or less horizontal urban growth and vertical urban growth
within their respective previously-developable spaces during the

Table 4
Total areas and area changes of estimated built-up areas and estimated MTBs for Beijing, Seoul, and Tokyo for three selected years.

City name Year Built-up
areas (km2)

Area change from
previous time (km2)

Annual change rate
(km2/year)

MTBs (km2) Area change from
previous time (km2)

Annual change rate
(km2/year)

Beijing 1989 535.36 – – 8.22 – –
2001 574.73 39.38 3.28 17.99 9.77 0.81
2014 707.79 133.06 10.24 28.92 10.93 0.84

Seoul 1988 334.23 – – 7.52 – –
2002 363.43 29.20 2.09 10.20 2.68 0.19
2015 377.60 14.17 1.09 18.82 8.62 0.66

Tokyo 1988 936.47 – – 7.88 – –
1999 977.20 40.73 3.70 12.85 4.97 0.45
2014 1011.92 34.72 2.31 14.68 1.82 0.12

“–” indicates no available data.
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studied periods. However, the horizontal urban growth in Beijing is
much clearer than in Tokyo and Seoul, and the vertical urban growth in
Tokyo is very subtle compared with that in the other two cities. It is
surprising that Seoul had a fast vertical urban growth rate during
2002–2015 while its population had almost no increase during this
period.

In terms of development stages and patterns, Seoul and Tokyo tend
to be similar. At the beginning (i.e., around 1988) of the studied period,
the three cities had different development density levels, with the built-
up area percentage being 36.3% for Beijing, 73.3% for Seoul, and
83.0% for Tokyo (Table 5). Both built-up areas and MTB areas notice-
ably increased in Beijing during the two studied periods. In Seoul,
horizontal urban growth slowed down as vertical urban growth greatly
increased with time, probably because its limited developable space for
horizontal urban growth pushed the urban expansion process more
strongly toward vertical growth (Fig. 9(b) and (e)) as a result of the

strong demand for larger living spaces (i.e., large apartments) driven by
rapidly increased family income. Urban growth in Tokyo showed a
different pattern: while horizontal urban growth almost reached its
ceiling (90%) slowly, vertical urban growth was minor (and slowed
down) during the two studied periods (Fig. 9(c) and (f) and Table 5),
probably due to its very slow population increase and slower family
income increase.

5. Discussion

5.1. Has the urban growth of megacities in developed countries stagnated?

One can see in the analysis above that horizontal urban growth in
Seoul and Tokyo was slow. This can be attributed to three main reasons:
limited developable spaces (Fig. 9), slow or stagnant population in-
crease, and governmental policies. For example, because the greenbelt

Fig. 6. Intensity visualization of horizontal and vertical urban expansion in the distance to city centers using Gaussian kernel density estimation. (a), (b), (c), (d), (e),
and (f): Relationships between urban horizontal expansion and the distance to the city center in each study area for the corresponding studied period; (g), (h), (i), (j),
(k), and (l): Relationships between vertical urban expansion and the distance to the city center in each study area for the corresponding studied period. It is worth
noting that city boundaries (the red vertical dashed lines) are presented in order to visualize the relationships using the same distance scale. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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policy is a promising way of sustainable urban development, many
well-developed megacities (including Seoul and Tokyo) adopted it (Bae
& Sellers, 2007; Jun & Hur, 2001; Masucci, Stanilov, & Batty, 2013;

Yokohari, Takeuchi, Watanabe, & Yokota, 2000). In Japan, a similar
policy was enacted in 1968, which is called the City Planning Act
(Saizen, Mizuno, & Kobayashi, 2006). While Beijing had a continuing

Fig. 7. Transition from non-MTB areas to MTB (mid-rise or taller building) areas: percentage of MTB increase during a time period versus percentage of built-up areas
in grid cells at the beginning of the time period.

Fig. 8. Developable spaces for horizontal and vertical urban expansion in Beijing, Seoul, and Tokyo in the late 1980s. (a), (c), (e): Developable spaces for horizontal
urban expansion in Beijing in 1989, Seoul in 1988, and Tokyo in 1988, respectively. (b), (d), (f): Developable spaces for vertical urban expansion in Beijing in 1989,
Seoul in 1988, and Tokyo in 1988, respectively.
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fast population increase during more than the last two decades, the
population increases in Tokyo and Seoul were minor. However, this
study provides evidence that regardless of urban planning policy, both
Seoul and Tokyo were still growing vertically during the last two dec-
ades, despite very slow growth horizontally. The MTB percentage in-
crease rate in Seoul during 2002–2015 was especially obvious
(Table 5). This is consistent with the findings by Frolking et al. (2013),
which showed that there was large vertical urban development in Seoul
and Tokyo during 1999–2009.

5.2. What are the similarities and differences in spatial patterns of
horizontal and vertical urban growth between the studied megacities?

In terms of the magnitude of horizontal urban growth, the growth of
Beijing was much greater than that of the other two cities (Figs. 4(a),
5(a) and (d), and 9(a)) during the studied period, and Seoul was similar
to Tokyo (Figs. 6(b), (e), (c), and (f), and 9(b) and (c)). This is because

Beijing, as a relatively less developed megacity (development density
36.3% in 1989 and 57.9% in 2014, see Table 5), was going through a
rapid urbanization process, while Tokyo and Seoul were already well-
developed. As for the magnitude of vertical urban growth, Beijing had
the largest MTB area increase (Fig. 6(g) and (j), Table 4). Beijing and
Seoul had similar rates of MTB area increase for the period of around
2000 to around 2014 (Table 4), although the density of MTBs in Seoul
was much higher than in Beijing (Fig. 9(d) and (e), Table 5). Tokyo had
the lowest density of MTBs (Fig. 9(f)) and the least MTB area increase
(Table 4). Similar to the situation in Seoul, MTB area increase in Tokyo
mostly took place in a 5–15 km range during the study period (Fig. 6(h),
(k), (i), and (l)).

The smallest horizontal urban growth in Tokyo, a highly-developed
city even before 1988, can be partially explained by the urban devel-
opment and sea reclamation in its Koto district. The vertical urban
growth in Tokyo mainly occurred around its city center (Fig. 6(i) and
(l)). Tokyo’s urban landscape had been relatively stable (Ichikawa,

Fig. 9. Percentages of built-up areas, MTB areas, and developable spaces for horizontal and vertical urban expansion (red bars stand for developed areas; green bars
stand for developable areas). Horizontal developable space includes vegetation areas and bare land within manually-drawn boundaries (i.e., non-built-up areas, non-
waterbody, and non-mountainous areas). Vertical developable space includes horizontal developable space and built-up areas without buffered MTB areas within
manually-drawn boundaries (i.e., excluding MTBs and their one pixel buffer areas). The y-axis in the first row (i.e., percentage of built-up area) indicates the
percentage of built-up areas in terms of total area of horizontal developable and developed spaces; the y-axis in the second row indicates the percentage of MTB areas
in terms of the total area of vertical developable and developed spaces. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 5
Built-up areas, MTB areas, and their annual increases in developable space.

City name Category Percentage in total area of
city (%)

Percentage in total area of
city (%)

Annual increase from
previous studied year (%)

Percentage in total area of
city (%)

Annual increase from
previous studied year (%)

Beijing Year 1989 2001 2014

Built-up areas 36.3 47.0 0.9 57.9 0.8
Buffered MTBs 3.4 7.2 0.3 11.2 0.3

Seoul Year 1988 2002 2015

Built-up areas 73.3 78.9 0.4 81.8 0.2
Buffered MTBs 8.0 11.1 0.2 19.7 0.7

Tokyo Year 1988 1999 2014

Built-up areas 83.0 85.9 0.3 88.8 0.2
Buffered MTBs 3.4 5.5 0.2 6.3 0.1
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Okubo, Okubo, & Takeuchi, 2006), though an excessively high devel-
opment density was still happening. The urbanization process in Seoul
showed a relatively small horizontal urban expansion from 1988 to
2015 (Fig. 6(b) and (e)), but a great vertical urban growth as infilling,
particularly for the period of 2002–2015 (Fig. 6(h) and (k)). The large
vertical urban growth in Seoul during 2002–2015 may be caused by a
strong demand for larger living apartments driven by a rapid increase in
family income. Moreover, both Seoul and Tokyo had slow but wide-
spread horizontal urban growth (Fig. 6(b), (e), (c), and (f)) when their
development densities were high.

6. Conclusions

A spatial and temporal pattern analysis of the horizontal and ver-
tical urban expansion of three megacities, Beijing, Seoul, and Tokyo, in
East Asia during the late 1980s to the mid-2010s, is presented. Due to
limited horizontal developable spaces, the horizontal urban growth in
Seoul and Tokyo was very slow; however, Beijing expanded quickly in
the horizontal dimensions during more than the last two decades while
its land development density was low. The annual change rates in
Beijing for the two periods showed an increasing trend in both hor-
izontal and vertical urban growth. On the contrary, the change trend in
horizontal and vertical urban growth in Tokyo for the two periods was
decreasing, which might be because of the limited horizontal devel-
opable space and the slowing urban development process in the city.
While the horizontal developable space in Seoul was similarly limited
as in Tokyo, Seoul had a slow horizontal urban expansion progress,
especially for the later period. However, Seoul increased largely in the
vertical dimension over time in order to respond to the pressure of the
limited horizontal developable space and the demand for building
living areas. Overall, this study shows that: (1) both horizontal and
vertical urban expansion had been happening in the megacities during
the studied period; (2) different cities showed some differences in
growth patterns because they were at different urban development
stages and their urban expansion patterns were impacted by different
geographical settings, population changes, and urban development
policies; and (3) a similarity is that those megacities tended to hor-
izontally expand initially and then grow vertically in the already de-
veloped areas.

With its novel findings this study may provide a useful new per-
spective on the urban expansion of megacities. It is useful for improving
our understanding of the spatial and temporal patterns of urban ex-
pansion. Since urban growth and spatial patterns interact with socio-
economic, political, and urban environmental conditions, this study
may also be helpful for understanding the environmental effects of
urban expansion and providing support to sustainable urban develop-
ment planning and policies for East Asia’s megacities.
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