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ABSTRACT
The Markov chain random field (MCRF) model is a spatial statistical
approach for modeling categorical spatial variables in multiple
dimensions. However, this approach tends to be computationally costly
when dealing with large data sets because of its sequential simulation
processes. Therefore, improving its computational efficiency is necessary
in order to run this model on larger sizes of spatial data. In this study,
we suggested four parallel computing solutions by using both central
processing unit (CPU) and graphics processing unit (GPU) for executing
the sequential simulation algorithm of the MCRF model, and compared
them with the nonparallel computing solution on computation time
spent for a land cover post-classification. The four parallel computing
solutions are: (1) multicore processor parallel computing (MP), (2)
parallel computing by GPU-accelerated nearest neighbor searching
(GNNS), (3) MP with GPU-accelerated nearest neighbor searching (MP-
GNNS), and (4) parallel computing by GPU-accelerated approximation
and GPU-accelerated nearest neighbor searching (GA-GNNS).
Experimental results indicated that all of the four parallel computing
solutions are at least 1.8× faster than the nonparallel solution.
Particularly, the GA-GNNS solution with 512 threads per block is around
83× faster than the nonparallel solution when conducting a land cover
post-classification with a remotely sensed image of 1000 × 1000 pixels.
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1. Introduction

Geostatistical (or spatial statistical) simulation algorithms (e.g. sequential simulation, turning bands,
truncated Gaussian, and simulated annealing) (Srivastava 1996), particularly sequential simulation,
have been widely used in geographic information fields, including uncertainty assessment (Mowrer
1997; Goovaerts 2002; Zhao et al. 2005), soil/sediment mapping (Bierkens and Burrough 1993;
Weissmann and Fogg 1999; Lark 2000; Wu et al. 2004; Zhang and Li 2008), environmental evalu-
ation (Lee and Ellis 2000; Juang, Chen, and Lee 2004), land cover post-classification (Zhang, Li,
and Zhang 2016; Zhang et al. 2017a) and urban growth detection (Zhang et al. 2017b). However,
spatial sequential simulation is computationally costly, particularly when simulating a massive
amount of nodes (Vargas, Caetano, and Mata-Lima 2008; Mariethoz 2010; Nunes and Almeida
2010; Peredo, Ortiz, and Herrero 2015; Rasera, Machado, and Costa 2015). As a new geostatistical
approach for dealing with categorical spatial variables, the Markov chain random field (MCRF)
approach (Li 2007a) adopted the spatial sequential simulation idea in its simulation algorithm
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(see Li and Zhang 2007 for the Markov chain sequential class simulation algorithm). As an extension
of the MCRF model, the MCRF cosimulation (coMCRF) model (Li et al. 2015) has been proposed
and successfully used in land cover post-classification recently for improving the overall accuracy of
land cover classification (Zhang, Li, and Zhang 2016; Zhang et al. 2017a; Zhang et al. 2017b). How-
ever, similar to other spatial sequential simulation methods, the computational cost of executing the
coMCRF model in sequential simulation increases dramatically as the data size of a simulation
increases. Therefore, better computational performance of the coMCRF model would significantly
encourage the use of the model in land cover post-classification and other applications of the
MCRF approach.

Parallel computing techniques have created a great opportunity for resolving spatial compu-
tational issues (Wang and Armstrong 2009; Ingram and Cornford 2010; Chao et al. 2011; Zhao
et al. 2015; Li, Hodgson, and Li 2016; Liu et al. 2016; Du et al. 2017). At present, parallel computing
solutions can be divided into three groups in terms of central processing units (CPUs) and graphics
processing units (GPUs). The first group is parallelization using multi-core CPU(s) (including both
shared memory models and distributed memory models). In geostatistics, for example, a number of
researchers parallelized kriging interpolation processes on distributed computing systems (Arm-
strong and Marciano 1997; Pesquer, Cortés, and Pons 2011; Wei et al. 2015). Peredo, Ortiz, and Her-
rero (2015) enabled the Geostatistical Software Library (GSL) to improve computation efficiency
using both hybrid parallel computing and code optimization. Mariethoz (2010) presented a general
parallelization strategy for geostatistical sequential simulation at the path level and tested it using
Message Passing Interface (MPI) on a distributed computing system. The second group is paralle-
lization using many-core GPU(s) (e.g. the Compute Unified Device Architecture (CUDA) frame-
work). For example, Srinivasan, Duraiswami, and Murtugudde (2010) parallelized the process of
kriging interpolation to approximate real-time atmospheric conditions from scattered data on a
GPU device. In order to reduce the execution time of running an ordinary kriging model, De
Ravé et al. (2014) parallelized the matrix inverse processes, which were considered the most time-
consuming step within the model. Li et al. (2014) developed a two-stage GPU-accelerated method
to achieve the speedup of 17× in high-order spatial statistics calculation. Mei (2014) further
improved the computational efficiency of Inverse Distance Weighting interpolation on GPU by
maximizing the use of fast shared memory. Cheng (2013) andWu et al. (2016) succeeded in speeding
up a kriging algorithm for interpolation with the aid of CUDA-enabled GPU. The third group is het-
erogeneous computing. For example, in order to accelerate geostatistical simulation, Tahmasebi et al.
(2012) developed a hybrid parallel computing method that can avoid conflicts between concurrent
computations in simulation. Shi and Ye (2013) conducted a comparative study on parallelization
methods of kriging interpolation on hybrid computer architectures and showed that the use of mul-
tiple GPU devices can accelerate kriging interpolation over a large data set.

However, applying parallel computing to spatial sequential simulation is not easy, mainly because
the requirement of parallelization is often against the high dependence between the tasks from
sequential simulation (Nunes and Almeida 2010; Tahmasebi et al. 2012). This study explored the
utilization of parallel computing techniques on sequential simulation of the MCRF approach. Con-
sidering that the recently proposed coMCRFmodel is very useful in land cover post-classification but
it is time-consuming with large data sets, we used the coMCRF model in the MCRF sequential simu-
lation algorithm. Experiments were performed on land cover post-classification. In order to evaluate
whether parallel computing solutions can reproduce the results of nonparallel sequential simulation,
we conducted a comparison between simulation results of the proposed parallel computing solutions
and that of the nonparallel solution. In addition, we also considered different numbers of CPU cores
and GPU threads in parallel computing. Although the experiments were made on the coMCRF
model, the developed parallel computing solutions can be applicable to other MCRF models and
other geostatistical models in sequential simulation. Python and C programming languages were
used to develop the parallel computing solutions by using the multiprocessing module for
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parallelization with multi-core CPU(s), and CUDA and the PyCUDA module for parallelization
with many-core GPUs.

The remainder of this paper is structured as follows: Section 2 gives a full description of the MCRF
approach, the coMCRF model, computational analysis of the MCRF sequential simulation algor-
ithm, and the proposed parallel computing solutions. Section 3 presents the experiments and results
about the performance of the proposed parallel solutions on using the coMCRF model in land cover
post-classification. Finally, this study is summarized in Section 4.

2. The coMCRF sequential simulation

2.1. The coMCRF model

The coMCRF model (Li et al. 2013, 2015) is an extension of the MCRF model (Li 2007a). An MCRF
is defined as a spatial Markov chain locally-conditioned through sequential Bayesian updating on
nearest data. Based on the conditional independence assumption of nearest data within a neighbor-
hood, the MCRF local conditional probability distribution function for an unobserved location u0 is
described as:

P[i0(u0)|i1(u1), . . . , im(um)] =
Pi1i0 (h10)

∏m
g=2 Pi0ig (h0g)∑n

f0=1 Pi1f0 (h10)
∏m

g=2 P f0ig (h0g)
[ ] (1)

where i0 represents the categorical class of the unobserved node at location u0; i1 to im refers to the
classes of the m nearest data neighbors (i.e. label-informed nodes) around u0 at corresponding
locations u1 to um within a neighborhood; n represents the number of classes; f0 represents all of
the possible classes of the unobserved node at location u0; and finally Pi0ig (h0g) represents a specific
transition probability over the separation distance h0g from class i0 at location u0 to class ig at
location ug , which can be drawn from a transiogram model Pi0ig (h) (Li 2007b).

The transiogram was proposed as a unique name for transition probability-lag curves and func-
tions and characterized as a generalized two-point correlation measure for categorical data by Li
(2007b). A transiogram is theoretically a transition probability function of a separation distance:

Pij(h) = P[Z(u+ h) = j|Z(u) = i] (2)

where Pij(h) represents a transition probability over the separation distance h; i and j refer to the
specific classes of random variables Z(u) and Z(u+ h) at locations u and u + h, respectively; and
h indicates the separation distance between locations u and u + h. Transiogram models can be
directly derived from sample data through experimental transiograms. Main studies related to tran-
siograms can be seen in Schwarzacher (1969), Luo (1993), Carle and Fogg (1996, 1997), Li (2007b),
Li and Zhang (2010), and Li, Zhang, and Dey (2012).

To approximately satisfy the requirement of the conditional independence of nearest data, the
MCRF sequential simulation algorithm for implementing the MCRF model uses a quadrant (one
nearest datum per quadrant) neighborhood (Li and Zhang 2007), which is similar to the quadrant
search neighborhood strategy used for declustering (Klinger 1971; Isaaks and Sarivastava 1989).

The coMCRF model estimates the local conditional probability distribution by considering the
co-located datum of a covariate field (i.e. a pre-classified image) when it is applied for improving
land cover classification. Therefore, the coMCRF model for land cover post-classification is
described as:

P[i0(u0)|i1(u1), . . . , i4(u4); r0(u0)] =
Qi0r0Pi1i0 (h10)

∏4
g=2 Pi0ig (h0g)∑n

f0=1 Qf0r0Pi1f0 (h10)
∏4

g=2 P f0ig (h0g)
[ ] (3)

where Qi0r0 refers to the cross-field transition probability from class i0 at location u0 in the primary
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field being simulated to class r0 at the co-location in the auxiliary field (here the pre-classified image
used in land cover post-classification) (Li et al. 2015).

2.2. Execution of the coMCRF model for land cover post-classification

To execute the coMCRF model for land cover post-classification, transiogram models and the cross-
field transition probability matrix are required (Li et al. 2015). Transiogram models represent the
spatial auto and cross correlations of classes in the primary field to be simulated (Li 2007b; Li and
Zhang 2010). The cross-field transition probability matrix represents the correlations between categ-
orical classes within the primary field and the classes within the pre-classified image (Li et al. 2013).

The implementation of the coMCRF model consists of two stages, as shown in Figure 1: (1) data
preparation and parameter setup, and (2) sequential simulation. The sequential class simulation pro-
cess includes the following steps (Li and Zhang 2007): (1) set the random path for starting a realiz-
ation; (2) visit the first node along the random path and acquire its position (i.e. coordinates); (3)
search for the nearest (sample or already simulated) datum in each of the four quadrants within
the pre-set search radius; (4) select a uniformly-distributed random number in the range of [0.0,
1.0); (5) fetch a value for the node from the calculated cumulative local conditional probability dis-
tribution based on Equation (3); (6) visit the next successive node along the random path and repeat
the steps from (3) to (5) until all unobserved nodes are visited and a realization is generated; (7) start
the next realization. In this sequential simulation process, the nearest neighbor searching for each
neighborhood always considers the previously simulated nodes.

2.3. Computational analysis

Profiling enables us to find out the speed bottlenecks of a program (Gorelick and Ozsvald 2014). A
computational analysis was made to profile the sequential simulation algorithm in order to identify
the most time-consuming steps in executing the coMCRF model, so that those steps can be decom-
posed for domain parallelism or functional parallelism. A sequential simulation based on the coMCRF
model was performed and profiled on a workstation (OS: Windows; CPU: Intel Xeon E3-1225 v3;
Ram: 16GB), with a case study of 1000 × 1000 pixels for land cover post-classification. Similar to
the findings in other studies (Vargas, Caetano, and Mata-Lima 2008; Pesquer, Cortés, and Pons
2011), our analysis finds that the quadrant nearest neighbor searching (NNS) and the sequential simu-
lation steps consumemost of the execution time (up to 95%) for generating a realization. The quadrant
nearest neighbor searching and the random simulation cost approximate 43% and 52% of the total

Figure 1. Flowchart of the execution of the coMCRF-based sequential simulation algorithm for land cover post-classification.
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execution time, respectively. Compared to Vargas, Caetano, andMata-Lima (2008) with respect to the
time cost of the neighborhood search step, the quadrant nearest neighbor searching consumes a higher
proportion of the execution time, because one quadrant neighborhood search needs to launch four
independent spiral searches sequentially to identify the nearest neighbors within all quadrants. Over-
all, it is those two steps that limit the computational performance of the coMCRF model.

3. Parallel computing solutions suggested for the MCRF approach

In geostatistics, sequential simulation means that during the simulation process of a realization, pre-
viously simulated values for unobserved nodes along a random path are included in the sample data
set for conditioning the subsequent simulation of other unobserved nodes (Goovaerts 1997; Arpat
and Caers 2007; Ruggeri et al. 2013). This nature of geostatistical sequential simulation makes par-
allelization difficult to do. As most computers have multi-core CPUs and many-core GPUs, it is
essential to properly make use of the hardware to solve computing problems (Zaccone 2015).

Mariethoz (2010) summarized three levels in parallelizing sequential simulation (i.e. realization
level, path level, and node level). In this study, four parallel computing solutions were proposed
to maximize the parallelization of the sequential simulation of the coMCRF model based on three
parallelization functions (i.e. multicore processing, GPU-accelerated nearest neighbor searching,
and GPU-accelerated approximation): (1) multicore processor parallel computing solution (MP),
(2) parallel computing by GPU-accelerated nearest neighbor searching (GNNS), (3) MP with
GPU-accelerated nearest neighbor searching (MP-GNNS), and (4) parallel computing by GPU-
accelerated approximation (GA) and GPU-accelerated nearest neighbor searching (GA-GNNS)
(see Table 1). These different solutions may be useful in different situations based on available com-
puting facilities and actual needs.

3.1. Multicore processing

To highly parallelize a sequential simulation, the key is to minimize communication and maximize
synchronization (Mariethoz 2010; Ferreirinha et al. 2015). The multicore CPU method has shown
the potential for parallelizing serial programs without remodeling them (Cheng, Li, and Wang
2010). The first developed parallel computing solution for the MCRF approach, which is also the
first parallelization function, is an instinctive solution at realization level – multicore simulation.
In this solution, each processor core executes one realization without communications between
processor cores. In general, the number of available CPU cores determines the speedup when
simulating many realizations.

3.2. GPU-accelerated nearest neighbor searching

The quadrant NNS used in the MCRF approach consumes approximately 43% of the execution time
of the coMCRF-based sequential class simulation. That is the second most time-consuming

Table 1. Description of four parallel computing solutions for sequential simulation using the coMCRF model.

Parallel computing
solution

Number of used CPU
cores

Number of used GPU
devices Parallelization function

MP n 0 Multicore processing
GNNS 1 1 GPU-accelerated NNS
MP-GNNS n 1 Multicore processing + GPU-accelerated

NNS
GA-GNNS 1 1 GPU-accelerated approximation

algorithm +
GPU-accelerated NNS

‘n’ – the number of available CPU cores.
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computation in the whole simulation process. A variety of search strategies have been used in geos-
tatistical modeling, such as the exhaustive search, super block search, spiral search, and two-part
search (Deutsch and Journel 1992). The spiral search is widely used among these strategies (Man-
chuk 2004). A GPU is considered an affordable compromise of computing devices with multi-
threaded, multi-core processors for high computing demand (De Ravé et al. 2014). It is not easy
to design a parallel algorithm for the NNS in a sequential simulation, because potential nearest
neighbors are not fixed once previously simulated nodes are included in the sample data set for
later conditioning; that is, the number of informed data as potential nearest neighbors for subsequent
simulation of left-unobserved nodes is always changing.

The MCRF approach first used exhaustive search and then used spiral search in its quadrant
neighborhood search algorithm. One quadrant NNS requires launching four independent searches
sequentially to identify the nearest neighbor within each quadrant in order to approximately meet
the conditional independence condition of nearest data within a neighborhood (see Equation (3)).
To avoid repeating distance calculation and sorting processes, a search strategy called ‘fixed-path
search’ was used. The parallel fixed-path search consists of three steps: (1) first defining a fixed
search path from the current node to the potential nearest data node for each quadrant within a
pre-set search radius (Figure 2(a)); (2) searching for the nearest data nodes along the defined
paths quadrant by quadrant on GPU devices, until a data node (i.e. a sampled or previously simu-
lated node) is found or the search reaches the limit of the search radius in each quadrant (Figures 2(b
and c)); (3) gathering all the identified nearest neighbors in quadrants for the neighborhood. It is
worth mentioning that if an identifiable anisotropy occurs in the whole study area (e.g. in subsurface
layer cases), anisotropic quadrant search and anisotropic transiograms may be used to account for
the anisotropic spatial patterns.

3.3. GPU-accelerated approximation algorithm

Approximation algorithm has been used in geostatistical sequential simulation (Dimitrakopoulos
and Luo 2004; Ferreirinha et al. 2015). Rather than simulating a single node per cycle, the GA algor-
ithm here simulates a group of nodes at a time based on the assumption that the nodes within each
group partitioning a random path are relatively independent of each other. Therefore, theoretically,
it is the group size of nodes that determines both the degree of uncertainty and the speedup of a
sequential simulation. A larger group size of nodes leads to more improvement in computing per-
formance but less spatial uncertainty among realizations, and vice versa (Rasera, Machado, and
Costa 2015).

Inspired by the relaxation strategy in Ferreirinha et al. (2015), we applied a GA algorithm to the
coMCRF-based sequential simulation by partitioning the random path for a realization based on the
assumption that the unobserved nodes (to be simulated) within each partitioned section (i.e. group
of nodes) along the random path are approximately independent of each other (i.e. these nodes are
not clustered together, and they are only dependent locally on the nearest data excluding them-
selves). Such an assumption is reasonable because the nodes in each partitioned section are randomly
distributed in the entire study area and usually located with a large separation distance. In fact, as the
number of simulated data increases, the nodes to be simulated in each partitioned section along the
random path tend to be separated by more data nodes and have more similar quadrant search results
between nonparallel sequential simulation and the GA simulation (see Figure 3). The GA algorithm
for one realization includes six steps (see Figure 4): (1) generate a random path visiting unobserved
nodes and all random numbers for simulating a realization at a time; (2) partition the unobserved
nodes along the random path into a number of groups (with n nodes for each group), (3) transfer
all node groups to the GPU device at once; (4) run the GNNS for all the node groups; (5) simulate
one group of nodes by n threads (i.e. the number of nodes n in a group is dependent on the number
of threads in each block) at a time using the pre-set random numbers and update the simulating
array; (6) then go through steps (3) to (5) to simulate the next group of nodes, till all groups are
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simulated and a realization is finished; (7) transfer simulated values back to the CPU so that they can
be gathered and then written into results.

4. Experiments and results

4.1. Experiments

To verify the efficiencies of the proposed solutions, experiments in land cover post-classification
based on the coMCRF model were conducted on a Haswell compute node, which is equipped
with 2× Xeon E5-2690 v3 totaling 12× cores for each, 128 GB RAM, and 2× NVIDIA Tesla K40
m totaling 2880 CUDA cores for each. The coMCRF-based sequential simulation was performed
with each computing solution five times in order to smooth the variance of execution time (Table
2). In land cover post-classification, a scene of 1000 × 1000 pixels with a spatial resolution of 30
m, which covers the northeastern part of Wuhan, China, with an area of 90,000 ha, was clipped
from a Landsat 8 OLI image acquired on September 17, 2013. For expert-interpreted data, 4021
data points were interpreted by expert judgment based on professional insight, through integrating
information from multiple sources. 80% of the expert-interpreted data points (data distribution
among classes: built-up area – 34.65%, farmland – 31.01%, woodland – 4.42%, waterbody –

Figure 2. GPU-accelerated NNS. (a) predefined fixed search path for each quadrant, where numbers in each quadrant represent the
searching sequential order; (b) quadrant nearest neighbor searching for nearest data nodes; (c) running the quadrant NNS quadrant
by quadrant on GPU devices.

572 W. ZHANG ET AL.



27.65%, bare land – 2.27%) were randomly selected as conditioning sample data (i.e. hard data) in
sequential simulation, and the remaining 20% (data distribution among classes: built-up area –
34.74%, farmland – 31.02%, woodland – 4.34%, waterbody – 27.54%, bare land – 2.36%) were
used for validation (i.e. accuracy assessment) (Figure 5). First, the clipped image was pre-classified
by a Neural Network classifier (Figure 1). Then it was post-classified by the coMCRF model, with a
neighborhood search radius of 50 nodes and all computing solutions. A series of experiments were
performed to test the computational efficiency of the four parallel computing solutions. Different
numbers of cores ranging from 2 to 24 on a CPU were considered for the MP and MP-GNNS,
and different numbers of threads for each block ranging from 32 to 1024 on a GPU device were con-
sidered for GA-GNNS (Figure 6). Finally, the performance improvement was evaluated in terms of
the elapsed time for generating 100 realizations and the optimal map. The quality of each simulation
was evaluated in terms of overall accuracy assessment of the optimal post-classification map gener-
ated by each computing solution (note that here overall accuracy is equal to the percentage of the
correctly classified nodes among the total holdout sample data nodes for validation.)

4.2. Results

Figure 6 and Table 2 show the amounts of elapsed time spent by all parallel solutions on the land
cover post-classification case by assuming the elapsed time of the nonparallel solution to be

Figure 3. The sum of difference in nearest search results every 1024 nodes between nonparallel sequential simulation and GPU-
accelerated approximation (GA) simulation, starting from the 1st node to the 1,000,000th node (left to right) with 32 nodes for each
group (a), 128 nodes for each group (b), 512 nodes for each group (c), and 1024 nodes for each group (d). N denotes the number of
different nearest nodes between a serial path and a partitioned path. S denotes the sequence number of simulation for each group.
The nearest search result of GA simulation with 32 nodes for each group is much more similar to that of nonparallel sequential
simulation than is that of GA simulation with 1024 nodes for each group. As the number of simulated data increases, the difference
of nearest search results between nonparallel sequential simulation and GA simulation decreases.
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1. The MP solution was used to test the effect of parallel computing at realization level by using
multiple CPU cores. With an increasing number of CPU cores, the computational performance of
the coMCRF model was improved gradually from 1.88× (at 2 CPU cores) to a peak of 16.54× (at
20 CPU cores). Because nearest neighbor searching accounts for only less than half of the elapsed
time in nonparallel sequential simulation, this solution improved the total computational effi-
ciency by 1.8×, which is significant. Further increasing the number of CPU cores (i.e. increasing
the size of the parallel computing group) resulted in little benefit, which can be explained by slow
spawning processes and I/O issues (Figure 6(c)). In MP-based parallel computing solutions
(including MP and MP-GNNS), the parent process starts a new child process for each realization
from the current parallel computing group sequentially, including both starting a fresh interpreter

Figure 4. Flowchart of the GPU-accelerated approximation (GA) algorithm.

Figure 5. Expert-interpreted data: 3215 points for the coMCRF sequential simulation (a), and 806 points for validation (b).
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Table 2. Computational efficiency of four parallel sequential simulation computing solutions compared with nonparallel sequential simulation.

Computing
solution

Number of
used CPU core

(s)

Number of
threads in each

block

Test 1st
elapsed time

(s)

Test 2nd
elapsed time

(s)

Test 3rd
elapsed time

(s)

Test 4th
elapsed time

(s)

Test 5th
elapsed time

(s)

Average
elapsed time

(s)
Overall accuracy of
land cover map (%)

Speedup
(×)

Nonparallel
sequential
simulation

1 – 21,926.86 22,626.26 22,530.75 22,363.69 21,412.91 22,172.09 86.23 1.00

MP 2 – 12,111.03 13,138.85 11,769.27 10,789.75 11,182.20 11,798.22 86.23 1.88
4 – 5975.34 6441.00 6372.41 5861.60 5701.28 6070.33 86.23 3.65
6 – 3965.92 3970.44 3991.83 4177.79 4034.85 4028.17 86.23 5.50
8 – 3402.45 3189.38 3348.64 3412.45 3468.26 3364.24 86.23 6.59
10 – 2397.01 2703.85 2424.39 2406.47 2361.94 2458.73 86.23 9.02
12 – 2410.55 2177.29 2149.17 2538.66 2210.53 2297.24 86.23 9.65
14 – 2177.94 2060.59 2088.21 1957.11 2124.71 2081.71 86.23 10.65
16 – 1745.93 1809.56 1721.95 1862.36 1776.68 1783.30 86.23 12.43
18 – 1569.24 1566.69 1571.58 1548.76 1627.62 1576.78 86.23 14.06
20 – 1299.77 1324.20 1385.40 1389.83 1302.77 1340.39 86.23 16.54
22 – 1461.46 1308.17 1291.25 1348.58 1335.48 1348.99 86.23 16.44
24 – 1305.35 1372.29 1303.26 1336.48 1344.00 1332.28 86.23 16.64

GNNS 1 512 11,315.05 12,998.80 13,144.30 11,310.49 12,918.27 12,337.38 86.23 1.80
MP-GNNS 2 512 5639.09 6030.38 5686.50 5499.23 6057.15 5782.47 86.23 3.83

4 512 2990.53 2991.42 3202.00 2949.77 3317.47 3090.24 86.23 7.17
6 512 2211.91 2285.30 2361.24 2145.18 2337.15 2268.16 86.23 9.78
8 512 1731.10 1749.73 1713.63 1905.31 1742.60 1768.47 86.23 12.54
10 512 1480.80 1442.48 1443.86 1462.00 1408.57 1447.54 86.23 15.32
12 512 1308.29 1305.70 1343.95 1387.34 1357.18 1340.49 86.23 16.54
14 512 1257.02 1249.24 1263.10 1293.45 1241.84 1260.93 86.23 17.58
16 512 1158.48 1138.88 1196.53 1169.09 1158.72 1164.34 86.23 19.04
18 512 1099.00 1065.50 1046.95 1099.59 1082.66 1078.74 86.23 20.55
20 512 949.13 1035.91 978.11 958.50 948.14 973.96 86.23 22.76
22 512 1000.33 985.17 1010.92 989.85 1047.11 1006.68 86.23 22.03
24 512 1010.57 1002.86 1022.83 1076.91 1010.35 1024.70 86.23 21.64

GA-GNNS 1 32 479.01 497.68 508.60 480.21 499.82 493.06 85.98 44.97
1 64 357.4 375.02 386.47 365.37 362.20 369.29 85.98 60.04
1 128 301.78 301.26 310.19 299.92 320.57 306.74 86.10 72.28
1 256 264.83 265.66 279.79 277.84 287.40 275.10 85.98 80.60
1 512 251.56 282.46 263.23 254.59 271.26 264.62 86.10 83.79
1 1024 262.09 282.40 264.88 270.54 282.38 272.46 85.86 81.38

‘–’: indicated not applicable.
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process and inheriting necessary resources from the parent process. The program cannot start
simulating the next group until the last realization in the current group is completed. As a result,
increasing the number of CPU cores to some extent may make the total execution time of a sto-
chastic simulation ascend. This impact becomes worse for MP-GNNS solutions because data
transferring between a CPU host and a GPU device for each realization also costs time (Figure
6(c)). The GNNS solution was used to examine the effect of the parallel nearest neighbor search-
ing at node level. More practical parallel computing solutions are MP-GNNS and GA-GNNS.
The MP-GNNS solution combined the MP solution and the GNNS solution, and it obtained
an optimal speedup at 22.76× when 20 CPU cores were used. The GA-GNNS solution combined
the GA algorithm and the GNNS solution, both realizing parallel computing at node level. With
GA, this solution obtained an optimal speedup at 83.79× when the number of threads was set to
512. These improvement rates with different parallel computing solutions may not appear ideal
enough based on the number of used CPU cores or the number of used GPU threads. This is
because there are some necessary nonparallel components and overhead communications in
the coMCRF-based sequential simulation process. However, such improvements in computation
speed, especially the speedup made by the GA-GNNS solution, are already very helpful to the
application of the coMCRF model to land cover post-classification.

Figure 6. Speedup comparison: (a) speedup change of computational efficiency with an increasing number of CPU cores for multi-
core solutions (MP and MP-GNNS); (b) speedup change of computational efficiency with an increasing number of threads for the
solution with GA algorithm (GA-GNNS); (c) change in the ratio of MP-GNNS speedup to MP speedup and change in the ratio of MP
speedup to the number of CPU cores.
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The GA-GNNS solution is faster (83× speedup) than the MP-GNNS solution. This should be
attributed to the effect of the GA algorithm. Although there is no parallel computing at realiz-
ation level, the use of GA at node level within a realization largely increased the computational
speed for producing a realization and thus reduced the total computational time used for per-
forming a land cover post-classification (generating 100 realizations and the optimal map). In
parallel computing, managing the parallelism and load balancing are the two keys to ensure
high performance. For example, the speedup increases as the group size increases in the GA
algorithm (Figure 6(b)). However, the speedup decreases after the group size becomes too
large (here ≥1024). This is because of the load balancing problem that a very large group size
would cause an unevenly distributed workload in a GPU device. Figure 6(b) indicates that
load balancing tends to be optimal when 512 nodes per group are used in the approximation
algorithm in our simulation case.

In the experiment, GNNS components cost around 2.4% of elapsed time with 280 MB data being
transferred each time, and GA cost around 5.9% of elapsed time with 1396 MB data being trans-
ferred. These facts indicate that the GA-GNNS solution did not suffer serious GPU memory and
GPU device data transfer issues in this study, which are common bottlenecks in GPU-accelerated
algorithms. The main reasons for this may be: (1) a relatively small study area (1000 × 1000 pixels),
(2) proper implementation of GA-GNNS in accordance with GPU computing architectures (such as
reducing data transfer and increasing the use of shared memory), and (3) the use of lightweight data
types. Although this study did not examine the performance of the GA-GNNS solution with a very
large image, the GA-GNNS solution might be applied to process a much larger image with a proper
data partitioning and data streaming scheme based on the widely used ‘divide-and-conquer’ strategy
without much modification of the code of the GA-GNNS solution. However, processing extremely
large images is often difficult and time-consuming due to the limitations of software and computer
memory.

Using multiple CPU cores and GPU-accelerated NNS (i.e. the MP, GNNS, and MP-GNNS sol-
utions) did not cause loss in overall accuracies of post-classified land cover maps (Table 2), because
the data dependency relationships in sequential simulation processes remained unchanged. How-
ever, the GA algorithm used an assumption that the nodes in each partitioned section of a predefined
random path are independent of each other. Such an assumption is not absolutely true, because
occasionally there may be a few cases in a partitioned section that two unobserved nodes are located
very closely and thus impact each other. To evaluate whether this assumption causes accuracy loss in
simulated results (i.e. post-classified maps), the quality of the simulated results was assessed and
visualized in Table 2 and Figure 7. One can see that the overall accuracies (85.86%–86.10%) of
post-classified land cover maps using the GA algorithm decreased very little (0.13%–0.37%), with
little difference depending on the number of threads (i.e. the size of partitioned node groups).
Such a minor difference in overall accuracy is visually reflected on the difference maps, as shown
in Figure 7(b–g). When the number of threads per block is relatively small (here ≤128), the land
cover post-classification maps generated by the GA-GNNS solution are basically the same as the
post-classification map produced by the nonparallel solution, except for some minor differences
along the edges of the maps where the search area for nearest neighbors is incomplete and thus simu-
lation is more sensitive to data nodes. However, internal differences between land cover post-classi-
fication maps with and without using GA increase as the number of threads per block increases
(Figure 7(b–g) and Figure 8(c–h)).

5. Conclusions

The MCRF approach is a promising geostatistical approach for modeling categorical spatial vari-
ables in multiple dimensions. However, the MCRF approach tends to be computationally costly,
because it highly involves sequential simulation processes as a Markov chain-based approach. To
tackle this computational issue, this study proposed and examined four parallel computing
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solutions for MCRF sequential simulation to improve the computing efficiency of the MCRF
approach. Testing of the proposed parallel computing solutions was performed on a specific
application of the MCRF approach – land cover post-classification, which uses the coMCRF
model to conduct cosimulation on expert-interpreted sample data and pre-classified land
cover data to improve classification accuracy. The proposed parallel computing solutions for
MCRF sequential simulation are MP, GNNS, MP-GNNS, and GA-GNNS. Our testing showed
that significant improvement in computational efficiency can be achieved by parallel computing
solutions by leveraging the power of multiple CPU cores, GPU devices, and an approximation
algorithm. It was also observed that three parallel computing solutions generated the same result

Figure 7. Comparison of land cover post-classification maps with and without using the GA algorithm. Land cover post-classifi-
cation map by nonparallel sequential simulation (a). Difference maps (light gray color: the same; red color: different) between non-
parallel sequential simulation (a) and parallel sequential simulation (GA-GNNS) with 32 threads (b), 64 threads (c), 128 threads (d),
256 threads (e), 512 threads (f), and 1024 threads per block (g).
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as the nonparallel solution did, but cost much less execution time. With the GA algorithm, the
GA-GNNS solution is able to greatly improve the computational efficiency of the coMCRF
model by 83× at a suitable number of block threads while causing little loss in overall accuracy
that may be negligible based on the comparison of post-classification maps. Particularly, com-
pared to multi-core solutions, which usually require more than 2 cores in a CPU, the proposed
parallel computing solutions that only rely on a GPU are more practical and portable. Based on
available computing facilities and actual needs, users may choose one of them in real
applications.

Figure 8. Enlarged comparison of land cover post-classification maps with and without using the GA algorithm. (a) The location of
the enlarged area in the post-classification map. (b) Land cover post-classification map by nonparallel sequential simulation. Differ-
ence maps (white color: the same; other colors: classes of those pixels assigned by parallel sequential simulation but different from
those by the nonparallel sequential simulation) between nonparallel sequential simulation and parallel sequential simulation (GA-
GNNS) with 32 threads (c), 64 threads (d), 128 threads (e), 256 threads (f), 512 threads (g), and 1024 threads per block (h).
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