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Many spatial attributes are classifi ed into mutually exclu-
sive multinomial classes (soil type is one example of 

multinomial categorical variables). For example, in a mesoscale 
study area such as a watershed that stretches across dozens of 
square kilometers, there may exist dozens of different soil series, 
which may be further grouped into several soil associations (Soil 
Conservation Service, 1962). Such soil series, particularly those 
within the same association, normally exhibit complex interclass 
relationships, such as cross-correlations, juxtapositions (i.e., side-
by-side), and directional asymmetries in occurrence sequences. 
To describe the self-dependence (i.e., autocorrelation) of each 
soil class (e.g., soil series) and the interrelationships between dif-
ferent classes, theoretically sound spatial measures are needed.

Markov transition probability matrices (TPMs) (or one-
dimensional fi rst-order stationary Markov chain models) have 
a long history of use as spatial measures to describe and simulate 
spatial sequences of lithofacies in geology (e.g., Potter and Blakely, 
1967; Krumbein, 1968; Carle and Fogg, 1997) and, more recently, 
soil layering in soil science (e.g., Li et al., 1999; Weigand et al., 
2001). However, one-dimensional transition probability diagrams 
were rarely used or discussed before Carle and Fogg (1996), who 

suggested using transition probability diagrams in indicator krig-
ing simulations of geological facies so that directional asymmetry 
and juxtaposition tendencies may be incorporated. Most of the 
studies to date have primarily used idealized transition probability 
diagrams—that is, they calculated transition probability diagrams 
from one-step transition probabilities based on a fi rst-order station-
ary Markovian assumption. For example, Schwarzacher (1969) 
used Markov transition probability diagrams calculated from TPMs 
to describe the vertical change of lithofacies. Similarly, Weissmann 
and Fogg (1999) used such diagrams, derived from one-step transi-
tion probabilities obtained with the transition rate method in the 
framework of transition-probability-based indicator geostatistics, 
for hydrofacies modeling. Some discussions about the properties of 
idealized transition probability diagrams can be found in Carle and 
Fogg (1996, 1997) and Ritzi (2000). In contrast to traditional var-
iograms, however, transition probability diagrams have rarely been 
estimated from sampled point data and also have not been effectively 
developed as independent spatial measures for heterogeneity charac-
terization. The major reason may be that Markov chains have not 
been developed into widely applicable multidimensional geostatisti-
cal tools for conditional simulations on sparse point samples. Note 
that although Markov random fi eld methods (including Markov 
mesh models) have been used in the geosciences for multidimen-
sional simulations (e.g., Norberg et al., 2002; Wu et al., 2004), they 
did not involve interactions of nonadjacent neighbors (i.e., pixels), 
which are measured by multistep transition probabilities.

Li (2006) recently proposed the transiogram concept and the 
use of this term for transition probability diagrams, suggesting that 
the transiogram might be used as an independent spatial relation-
ship measure for categorical data. There are two reasons for pro-
posing such a spatial measure. First, there is a need for a physically 
meaningful, readily managed, and visual measure of the complex 
spatial intra-class and interclass relationships among multinomial 
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are complex and usually have multiple ranges and irregular periodicities, which may be regarded 
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classes. Although TPMs may represent interclass relationships, they 
only measure one-step spatial relationships and fail to quantify the 
complex spatial relationships among classes across a number of spa-
tial steps. Thus, transiograms may reveal more information than a 
TPM does. Transiograms directly estimated from data are not lim-
ited by the fi rst-order stationary Markovian assumption and mani-
fest the effect of spatial-lag-dependent interactions among observed 
data, thus they contain a wealth of features that reveal spatial hetero-
geneity of multinomial classes. Second, Markov chain conditional 
simulation models (Li, 2007b) need a more powerful spatial mea-
sure such that they are more fl exible for working with various types 
of data (e.g., sparse sample point data) and incorporating complex 
spatial heterogeneity into simulations of multinomial classes.

 A comprehensive assessment of transiograms is presented with 
respect to (i) basic properties and types; (ii) theoretical background 
of idealized transiograms; (iii) complex features of experimental tran-
siograms estimated from multinomial spatial data (i.e., a mesoscale 
soil series map); and (iv) modeling of experimental transiograms 
estimated from sparse point samples. The primary objective was to 
introduce a suitable spatial measure for characterizing the complex 
spatial variability of discrete soil variables, particularly the interclass 
relationships among multinomial soil classes. Note that the word 
class is used as a general term for representing a category and the 
word state refers to the status of a Markov chain at a location.

THEORY
Transiogram

The Transiogram Concept
A brief introduction of the transiogram concept has been provided 

in Li (2006), and is summarized here. A transiogram is defi ned as a one-

dimensional transition probability (i.e., two-point conditional 
probability) function across the distance lag h:

[ ]( ) Pr ( ) | ( )ijp z x j z x i= + = =h h   [1]

where pij(h) is the transition probability of random variable z 
from class i to class j. As lag h increases from the origin, pij(h) 
generates a diagram, referred to as the transiogram. Therefore, 
pij(h) is used to denote a transiogram, with the understanding 
that pii(h) denotes the auto-transiogram of class i and pij(h) (i 
≠ j) notates the cross-transiogram from class i to class j. Here h 
may be unidirectional (e.g., west to east) or non-unidirectional 
(e.g., multidirectional or omnidirectional). In a discrete space, 
h can be represented by the number of spatial steps (i.e., pix-
els). A transition spatial step means that the spatial process (e.g., 
Markov chain) moves from one pixel to the next adjacent pixel, 
that is, the distance of a pixel size. In a continuous space, h 
is represented by a continuous distance measure (e.g., meters). 
Because cross-transition probabilities are normally asymmetric, 
i and j are not interchangeable in pij(h); for convenience, class i 
is called the head class, and class j is called the tail class.

In Eq. [1], Z is assumed to be a second-order stationary spa-
tial random variable, that is, pij(h) depends only on the lag h and 
not on the specifi c location x. This assumption, and the ergodic 
hypothesis (i.e., that spatial statistics are equivalent to ensemble 
statistics), allows estimation of transiograms directly from spa-
tial data pairs in a spatial data set. Note that this framework and 
assumption are similar to that underlying variogram estimation, 
and as such refers to the model, since there is no physical basis 

on which the hypothesis can be tested with respect to the data per se (e.g., 
see Deutsch and Journel, 1998, p. 12–13; Chilès and Delfi ner, 1999, p. 
19–24). Therefore, a transiogram also represents a two-point spatial conti-
nuity/discontinuity measure, similar to an indicator variogram. Auto-tran-
siograms represent self-dependence (i.e., autocorrelations) of single classes; 
however, cross-transiograms represent interclass relationships (including 
cross-correlations, juxtapositions, and directional asymmetries).

Types of Transiograms
Transiograms may be divided into two types based on how they are 

estimated: idealized transiograms and real-data (or observed) transiograms. 
The former refers to transiograms estimated using one-step transition 
probabilities based on the fi rst-order stationary Markovian assumption. 
The latter refers to transiograms directly estimated from real data sets. 
Real-data transiograms may be further split into two subtypes based on 
the type of data sets used: exhaustive transiograms and experimental tran-
siograms. Exhaustive transiograms refer to those transiograms directly esti-
mated from maps or images where data are exhaustive. Experimental tran-
siograms refer to those directly estimated from sparsely sampled data.

Figure 1 shows examples of different types of auto- and cross-tran-
siograms. The fi rst row (i.e., Fig. 1a and 1b) is a pair of idealized auto- 
and cross-transiograms. They are idealized because they are calculated 
from a one-step TPM, which implicitly imposes the fi rst-order stationary 
Markovian assumption (i.e., that data are spatially stationary, aperiodic, 
and dependent on only immediate neighbors). Idealized transiograms are 
typifi ed by smooth curves with stable sills and apparent correlation ranges. 
The second row of Fig. 1 shows a pair of exhaustive auto- and cross-tran-
siograms (see Fig. 1c and 1d), which obviously have more features and 
seldom show stable sills or clear correlation ranges. Here the term features 
refers to the apparent peaks and troughs as well as multiple ranges shown 

Fig. 1. Illustration of different types of transiograms: (a) idealized auto-transiogram; 
(b) idealized cross-transiogram; (c) exhaustive auto-transiogram; (d) exhaustive 
cross-transiogram; (e) experimental auto-transiogram; (f) experimental cross-
transiogram. Experimental transiograms are estimated from sparse samples and 
therefore they are composed of discontinuous points; p(i,j) represents a transi-
tion probability from class i to class j where h is the spatial lag separation vector.
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on a transiogram. These features usually should not be regarded as data 
noise. The third row of Fig. 1 provides a pair of experimental auto- and 
cross-transiograms (see Fig. 1e and 1f). Each is composed of a group of 
discontinuous points. Because real world data are usually strongly non-
stationary and non-fi rst-order Markovian, real-data transiograms have far 
more complex features than idealized transiograms have.

Basic Properties
Both real-data and idealized transiograms, as transition probabil-

ity diagrams, have the following basic properties:

1. Non-negative. As probabilities, transiograms are non-
negative, that is,

( ) 0ijp ≥h  [2]

2. Sum to 1. As transition probabilities, values of transiograms 
involving the same head class sum to 1 at any estimated 
lag h, that is,

1

( ) 1
n

ij
j

p
=

=∑ h
  [3]

where n is the number of classes, i is the head class, and j is the 
tail class.
3. No nugget effect. For mutually exclusive classes, theoretically 

and physically, transiograms should not have a nugget 
effect, that is, we have

(0) 0ijp = , i j≠                         [4]

for cross-transiograms and

(0) 1iip =   [5]
for auto-transiograms, which must always hold true. Therefore, 
auto- and cross-transiograms should include the points (0,1) 
and (0,0), respectively, in their curves (see Fig. 1).
4. Asymmetry. Transiograms are typically asymmetric, that is

( ) ( )ij jip p≠h h   [6]

The asymmetry property of transiograms provides more infor-
mation about spatial juxtapositional relationships between 
classes. But if transiograms are estimated bidirectionally or 
omnidirectionally, the following relationship holds:

( ) ( )j
ij ji

i

p
p p

p
=h h

 [7]

where pi and pj are the proportions of class i and class j, respec-
tively. This means that if we know pji(h) and the proportions 
of the two related classes in a study area (or a data set), we can 
directly obtain pij(h).
5. Irreversibility. If transiograms are estimated unidirectionally, 

they are typically irreversible; that is,

( ) ( )ij ijp p≠ −h h   [8]
The irreversibility property of unidirectional transiograms 
refl ects the directional asymmetry of spatial patterns of classes.
The fi rst three properties also constitute the set of constraint 

conditions of transiogram modeling for Markov chain simulation. 

The last two properties are special features of transiograms that other 
widely used spatial measures (e.g., variograms) may not have.

Idealized Transiograms
Although idealized transiograms are not a true refl ection of real-

world data or phenomena, they have theoretical and application value. 
For example, they can capture the basic correlation characteristics of 
classes and their properties are particularly helpful to interpreting real-
data transiograms and modeling experimental transiograms. Idealized 
transiograms have been used explicitly (Weissmann and Fogg, 1999) 
or implicitly (through multistep transition probabilities calculated from 
one-step TPMs; Li et al., 2005) in geostatistical conditional simulations, 
with one-step transition probabilities estimated from borehole data or 
survey line data. For the sake of simplicity and effi ciency, idealized tran-
siograms may be used as simplifi ed models when one-step transition 
probabilities are available. Therefore, understanding idealized transio-
grams is crucial, particularly for understanding real-data transiograms.

There are two simple methods to obtain idealized transiograms 
from one-step transition probabilities. The fi rst uses one-step TPMs, 
while the second uses the transition rate matrix method, to derive 
transiograms (Carle and Fogg, 1997). Both methods are based on the 
fi rst-order stationary Markovian assumption.

The First-Order Markovian Assumption
The fi rst-order Markovian assumption states that the conditional 

distribution of a future state, given past states and the present state, is 
independent of past history and depends only on the present state. The 
fi rst-order Markovian assumption (or property) can be expressed as

[ ]
[ ]

Pr ( 1) | ( ) , ( 1) , ... , (0)

Pr ( 1) | ( ) lk

z m k z m l z m r z s

z m k z m l t

+ = = − = =

= + = = =     [9]

where z(m + 1),…, z(0) represent a spatial state sequence of the ran-
dom variable z; k, l, r, and s represent states of the random variable in 
a state space (1, 2, …, n); and tlk represents the transition probability 
from state l to state k.

A fi rst-order stationary Markov chain can be described by a 
TPM. For example, a three-state fi rst-order Markov chain can be fully 
described by a TPM P with diagonal entries:

11 12 13

21 22 23

31 32 33

t t t
t t t
t t t

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

P

  [10]

where each entry of P represents a one-step transition probability 
between different states or within the same state with a fi xed step 
length. In a discrete space, Eq. [10] is commonly used.

Sometimes, a fi rst-order stationary Markov chain is expressed 
by a TPM without diagonal entries. Thus, the three-state fi rst-order 
Markov chain given in Eq. [10] can be rewritten as

12 13

21 23

31 32

⎡ ⎤− π π
⎢ ⎥
⎢ ⎥= π − π⎢ ⎥
⎢ ⎥π π −⎣ ⎦

Q

  [11]
where each entry of Q represents a transition probability between 
different states. The Markov chain described by Eq. [11] is called an 
embedded Markov chain, because the spatial continuity of a state has to 
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be decided by a specifi c probability distribution and embedded into a 
Markov chain simulation (Potter and Blakely, 1967; Li et al., 1999).

Idealized Transiograms Derived from Transition 
Probability Matrices

Under the fi rst-order stationary Markovian assumption, if n and 
m represent two distances in a spatial sequence and m < n, the fi rst-
order Markovian property can be formulated as

( ) ( ) ( )lk lj jk
j

t n t m t n m⎡ ⎤= −⎢ ⎥⎣ ⎦∑
  [12]

where tlk(n) denotes the transition probability from state l to state k across 
a distance n. This is the Chapman–Kolmogorov equation for homoge-
neous (i.e., stationary) processes (Agterberg, 1974, p. 420). If transition 
probabilities are arranged in the matrix format, Eq. [12] reduces to

( ) ( ) ( )n m n m= −P P P   [13]

where P(n) represents a TPM with the distance n.
In a discrete space, m and n can be numbers of spatial steps. 

Letting m = 1, we have

( ) (1) ( 1)n n= −P P P   [14]

Successively applying Eq. [14], we get

( ) (1)nn =P P  [15]

where P(n) represents an n-step TPM and P(1) a one-step TPM. As n 
increases, the entries in P(n) gradually become stable and reach the station-
ary probabilities—that is, different rows in P(n) will have the same values, 
with each entry tlk(n) being equal to the proportion of the tail class k.

Equation [15] represents the method to derive multistep transition 
probabilities from a one-step TPM. As n increases, the calculated multi-
step transition probabilities tlk(n) form a continuous diagram—an idealized 
transiogram plk(h). If the one-step TPM is estimated from suffi cient data 
and the study area is suffi ciently large compared with the normal polygon 
size, the derived transiogram will have a sill equal to the proportion of the 
tail class k. Therefore, Eq. [15] is one method for deriving idealized transio-
grams. The prerequisite for this method is that we must have reliable one-
step TPMs. The merits of this method are its simplicity and effi ciency.

Idealized Transiograms Derived from Transition Rates
A general solution satisfying the Chapman–Kolmogorov equa-

tion (Agterberg, 1974, p. 457) is

( ) exp( )=P h Rh   [16]

where R is a transition rate matrix (Krumbein, 1968), which is inde-
pendent of the lag h. For an m-state space,

11 1

1

m

m mm

r r

r r

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

R

  [17]

where entry rlk of R represents the rate of change per unit length (step) 
from class l to class k. Off-diagonal entries of R can be calculated from 
transition probabilities πlk of an embedded Markov chain and mean 

length lL  (for soil classes, a mean length refers to the mean polygon 
size [i.e., length or width] of a class, and is generally called the mean 
boundary spacing) of a class as

lk lk lr L=π  l k∀ ≠                   [18]

Analogously, the diagonal entries of R can be calculated by

1kk kr L=−   [19]

For more details on this method, see Carle and Fogg (1997) and Weissmann 
and Fogg (1999). If R is known, with increasing lag h, each entry of the 
TPM P(h) makes a continuous curve—an idealized transiogram.

Similarly, in a discrete space, h can be the number of spatial 
steps. If h = 1, Eq. [16] reduces to

(1) exp( )=P R   [20]

Thus, for n discrete steps, we have

( ) exp( ) (1)nn n= =P R P   [21]

Therefore, in a discrete space, the transition rate method and the one-step 
TPM method for transiogram estimation are theoretically identical.

Comparing the two methods, it can be seen that the transition rate 
method does not require estimation of the diagonal transition prob-
abilities, but the mean boundary spacing of each class must be known. 
When data are few and expert knowledge has to be used, it may be eas-
ier to estimate approximate mean boundary spacings than to estimate 
one-step self-transition probabilities. When detailed line data or exhaus-
tive data (e.g., a training image) are available, both one-step self-transi-
tion probabilities and mean boundary spacings can be easily estimated. 
Major benefi ts of the transition rate method, according to Carle and 
Fogg (1997), are continuity in functional representation of the Markov 
chain model and fl exibility afforded in choosing sampling intervals.

Properties of Idealized Transiograms
Besides the basic properties shared by all transiograms, idealized 

transiograms have the following properties, which may not hold for 
real-data transiograms.

An idealized auto-transiogram pii(h) starts from point (0,1) and 
with increasing h gradually decreases to a stable value, the sill Ci (Fig. 
1a). This sill, in a suffi ciently large area, is equal to the proportion pi 
of the class i in that area. Therefore, we have

lim ( )ii i ih
p C p

→∞
= =h

  [22]

The lag distance at which the auto-transiogram approaches its sill is 
called the autocorrelation range, denoted by ai. The autocorrelation 
range refers to the range within which observations of the same class 
are correlated. If the transiogram approaches its sill asymptotically, 
the effective range is set equal to the distance where the transiogram 
reaches 95% of its sill, similar to the effective range defi nition for 
asymptotic variogram models (Deutsch and Journel, 1998, p. 25).

While the autocorrelation range represents the distance of self-
dependence of the class i, it does not directly tell the mean size of poly-
gons of the class. If we draw a tangent of the auto-transiogram from 
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point (0,1) to the x axis, the lag h where the tangent crosses the x axis is 
equal to the mean of the polygon size of the class, denoted by iL , i.e.,

0( ) | 1ii ip L=∂ ∂ =−hh h   [23]

(see Fig. 1a) (Carle and Fogg, 1996).
An idealized cross-transiogram pij(h) starts from point (0,0) and 

with increasing h gradually increases to a stable value, the sill Cij (Fig. 
1b). The sill, for a suffi ciently large area, is equal to the proportion pj 
of the tail class j. That is, we have

lim ( )ij ij jh
p C p

→∞
= =h

  [24]

Similarly, we defi ne the cross-correlation range aij as the lag distance 
at which the sill is reached (or approached asymptotically). The 
cross-correlation range represents the distance within which the two 
involved classes are interrelated.

It should be noted that if one-step transition probabilities are esti-
mated from a small area, sills of idealized transiograms, particularly ide-
alized unidirectional cross-transiograms, may not be equal to propor-
tions of corresponding tail classes in the area because boundary effects 
become substantial in small areas. The term boundary effects in this con-
text refers to the fact that a class may have smaller transition frequencies 
in relation to other classes than those corresponding to the whole fi eld 
if the class is more frequently adjacent to the boundaries of the study 
area, because boundary polygons are incomplete and transitions to 
other classes beyond boundaries are unknown (Li, 2006). In addition, 
because of the properties of idealized transiograms given in Eq. [22] and 
[24], apparently if class i and class j have different proportions, idealized 
cross-transiograms pij(h) and pji(h) have different sills. Actually, even if 
pj = pi, pij(h) and pji(h) will generally not be equal at any arbitrary lag h 
less than their respective correlation ranges, because they may not have 
the same curve shape due to the different juxtaposition characteristics of 
classes. These explain why idealized cross-transiograms are asymmetric.

Real-Data Transiograms
The Non-Markovian Effect

The term Markovian property usually refers to the fi rst-order 
Markovian property and a Markov chain typically means a fi rst-
order Markov chain. So-called high-order Markov chains are actu-
ally Markovian representations of discrete non-Markovian processes. 
We will use the term non-Markovian, rather than the term high-order 
Markovian, to represent the non-fi rst-order Markovian property of a 
discrete process. The non-Markovian property of data has seldom been 
considered in previous Markov chain models in the geosciences. The 
fi rst-order Markovian property is an assumption for the convenience 
of creating fi rst-order Markov chain models, not a property of the data. 
Real-world data sets typically have many features that are not consistent 
with a Markovian assumption. These non-Markovian properties imply 
that the current spatial state not only depends on its adjacent state but 
also depends on some nonadjacent states in a spatial state sequence. If a 
real-world data set is strongly non-Markovian, it may not be proper to 
use a fi rst-order Markov chain model to deal with the data set.

Real-data transiograms have nothing to do with the fi rst-order 
Markovian assumption. They are a direct refl ection of the spatial variation 
characteristics of the original data. If transiograms from a real data set are 
basically identical with the corresponding idealized transiograms, we may 
say the data set is consistent with a fi rst-order Markovian assumption. 
Otherwise, the extra features manifested by the real-data transiograms are 

a refl ection of the non-Markovian properties of the data. Therefore, we 
may generally call such features the non-Markovian effect because they 
cannot be captured with a fi rst-order Markov chain model.

Real-data transiograms apparently provide a way to quantita-
tively and visually represent the non-Markovian property of data, 
which reveal special features not represented by idealized transio-
grams. When real-data transiograms or well-fi tted transiogram mod-
els are used in simulations, the non-Markovian effect of a data set is 
incorporated into the simulation. Thus, constraints imposed by fi rst-
order Markov chain models may be relaxed to some extent.

Exhaustive Transiograms
An exhaustive soil area-class map is essentially a simplifi ed repre-

sentation of the real soil landscape in a survey area based on fi eld survey 
data, soil taxonomy, and expert interpretation. It is impossible to obtain a 
100% accurate soil map, as an exhaustive survey is not feasible. The infor-
mation contained in reliable soil survey maps such as those provided by 
the USDA are the result of practical experience gained through long-term 
soil survey efforts and represent the collective knowledge of experienced 
survey teams under support of the government. These soil maps contain 
considerable knowledge on spatial variability of soil types and their spatial 
relationships as discerned by experienced soil surveyors. It is thus appro-
priate to regard a reliable human-delineated soil map as a good repre-
sentation of soil class spatial distributions (i.e., to assume the soil map 
bears the spatial statistics [e.g., transiograms] of the real soil distribution in 
the mapped area). Thus, transiograms estimated from a reliable soil map 
may reveal many characteristics of soil spatial distributions that are not 
readily apparent from a visual examination of the soil map. Exhaustive 
transiograms may be used (i) as a data-mining tool to extract knowledge 
on spatial correlations and interrelationships of soil classes from the exist-
ing digital soil maps, as the extracted knowledge is helpful for users to 
understand and interpret the mapped soils; and (ii) to provide direct tran-
siogram models or expert knowledge for estimating transiogram models 
for soils in other areas that bear similarities to the mapped region.

Experimental Transiograms
Samples usually account for only a very small portion of the whole 

study area and yet often represent the major source of information on 
which a soil map is delineated. Therefore, the information conveyed 
by the sample data is most precious. Because of the costs associated 
with collection, and the subsequent sparsity of data, there is no doubt 
that experimental transiograms estimated from such sampling will be a 
series of discontinuous points and may not reveal nearly as abundant 
information as is provided in exhaustive transiograms. Even so, experi-
mental transiograms can be used to characterize soil spatial variability 
and develop continuous transiogram models for stochastic simulation, 
similar to the way traditional experimental variograms have been used.

Modeling of Experimental Transiograms
Accurate modeling of transiograms is crucial to fully exploit the util-

ity of transiograms for both soil heterogeneity characterization and Markov 
chain simulation. For heterogeneity characterization, following the conven-
tion in traditional geostatistical applications, the goal is to choose a suitable 
type of function model and to specify (statistically fi t) model parameters 
to the sample data, thus providing a characterization of spatial heterogene-
ity in terms of a few simple parameters (e.g., such as the range, sill, wave-
length, and model type, for instance, Gaussian, exponential, or spherical). 
For Markov chain simulation of soil classes, a crucial step is to parameterize 
a continuous transiogram model that captures as many major features of 
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the experimental transiograms as possible. This allows the soil spatial het-
erogeneity conveyed by the sample data to be effectively incorporated into 
the stochastic simulation, thus ensuring that such simulations more accu-
rately refl ect the sample data. When sample data are insuffi cient, experi-
mental transiograms may not convey reliable information (e.g., they may 
exhibit spurious fl uctuations). In this situation, expert knowledge regarding 
plausible values for correlation ranges, sills, and transiogram model type are 
required to build a suitable model.

Basic Transiogram Models
One may use any suitable mathematical model to represent an 

experimental transiogram, such as some of the classic mathematical 
models that are widely used in modeling auto-variograms (Deutsch 
and Journel, 1998, p. 25), which may be readily adapted to model 
auto- and cross-transiograms. Such suitable models include the expo-
nential, spherical, Gaussian, and linear mathematical (theoretical) 
models. The observed characteristics of experimental auto- and cross-
transiograms can be used to develop anisotropic models that satisfy 
the theoretical constraints implicit in a transiogram.

Recall that sills of idealized transiograms are theoretically equal to 
the proportions of their respective tail classes. Although experimental 
transiograms are normally more complex in shape than idealized tran-
siograms and may thus not manifest a stable sill, the magnitudes are 
still a refl ection of the tail class proportions. Therefore, setting the sill 
of a transiogram model to the proportion of the tail class is appropriate. 
Ritzi (2000) provided some basic mathematical models for auto-transi-
tion probabilities (i.e., auto-transiograms) with the model sills being set 
equal to the class proportions.

The shape of a cross-transiogram with increasing lag is similar 
to that of an auto-variogram. Thus, we can simply set sills of math-
ematical models to the proportions of the corresponding tail classes 
for modeling cross-transiograms (Li, 2007a). The exponential model 
for cross-transiograms can thus be given as

( ) 1 exp( 3 )ij j ijp h p h a⎡ ⎤= − −⎢ ⎥⎣ ⎦   [25]

Since the maximum value of an auto-transiogram occurs at h = 0, the 
model sills are prescribed differently. The corresponding exponential 
model for auto-transiograms can be given as

[ ]( ) 1 (1 ) 1 exp( 3 )ii i ip h p h a= − − − −   [26]

(Ritzi, 2000). Equation [26] ensures that the sill of the auto-tran-
siogram model is equal to the proportion of the modeled class. Sills 
of other models can be set similarly. Basic mathematical models for 
auto- and cross-transiograms are given in Table 1. Note that the nug-
get model used for modeling variograms is discarded here because 
transiograms for multinomial classes should not have a nugget effect.

In many cases, these basic models are suffi cient to fi t the general 
trend of an experimental transiogram. They are not capable of modeling 
fi ner details of experimental transiograms, however, particularly a cross-
transiogram that exhibits a peak or signifi cant non-Markovian effects.

When a study area is small and the sill of an experimental tran-
siogram obviously deviates from the theoretically expected sill (i.e., the 
proportion of the tail class) because of the boundary effect, setting the sill 
of the transiogram model to the proportion of the tail class may result in 
a fi t to the experimental transiogram that appears inaccurate; however, 
the transiogram model thus derived should be a better refl ection of the 
spatial heterogeneity.

Ma and Jones (2001) suggested using multiplicative-composite mod-
els to fi t hole-effect auto-variograms, or at least to fi t the fi rst peak if a hole-
effect auto-variogram is irregular. The cosine–exponential model and the 
cosine–Gaussian model used by Ma and Jones (2001) are adapted here in 
the same way for modeling periodicities of transiograms (see Table 1). These 
two models attenuate the sinusoidal amplitude with increasing lag; however, 
the cosine–Gaussian model has higher peak heights than the cosine–expo-
nential model. In many situations, one may fi nd these hole-effect models 
still do not adequately fi t experimental transiograms of multinomial classes, 
because the latter are too complex and irregular. Nested models constructed 
from these basic models may be useful for some complex transiograms.

Transiogram Model Constraints for Stochastic Simulation
If the purpose in constructing transiogram models is solely to char-

acterize soil spatial variability (e.g., with no attempt to create a stochastic 
simulation), there is no need to strictly adhere to the theoretical constraints. 
When creating transiogram models for use in Markov chain simulations, 
however, the aforementioned three constraint conditions (Eq. [2–4]) must 
be satisfi ed to correctly perform simulations.

The requirement that the transiogram model is void of a nugget 
effect (i.e., Eq. [4]) can be satisfi ed by including the points at 0 lag [i.e., 
point (0,1) for auto-transiograms and point (0,0) for cross-transiograms] 
into experimental transiograms and honoring these values in fi tted mod-
els. One option for the transiogram models fi tting a subset of experimen-
tal transiograms headed by the same class to satisfy the summing-to-1 
constraint (i.e., Eq. [3]) is to infer one of them from others by the fol-
lowing equation:

1

( ) 1 ( )
n

ik ij
j
j k

p p
=
≠

= −∑h h

 [27]

where n is the number of classes, i is the head class, and pik(h) is the 
inferred model (Li, 2007a).

Table 1. Some basic mathematical models for transiograms.

Model type Function†

For auto-transiograms‡

Linear
pii(h) = 1 − (1 − pi)h/ai;  h < ai
pii(h) = pi;  h ≥ ai

Spherical
pii(h) = 1 − (1 − pi)[1.5(h/ai) − 0.5(h/ai)

3];  h < ai
pii(h) = pi;  h ≥ ai

Exponential pii(h) = 1 − (1 − pi)[ 1 − exp(−3h/ai)]
Gaussian pii(h) = 1 − (1 − pi){1 − exp[−(3h/ai)

2]}
Cosine–exponential pii(h) = 1 − (1 − pi)[1 − exp(−3h/ai)cos(bh)]
Cosine–Gaussian pii(h) = 1 − (1 − pi)[1 − exp(−3h2/ai

2)cos(bh)]

For cross-transiograms (i ≠ j)

Linear
pij(h) = pjh/aij;  h < aij

pij(h) = pj;  h ≥ aij

Spherical
pij(h) = pj[1.5(h/aij) − 0.5(h/aij)

3];  h < aij
pij(h) = pj;  h ≥ aij

Exponential pij(h) = pj[1 − exp(−3h/aij)]
Gaussian pij(h) = pj{1 − exp[−(3h/aij)

2]}
Cosine–exponential pij(h) = pj[1 − exp(−3h/aij)cos(bh)]

Cosine–Gaussian pij(h) = pj[1 − exp(−3h2/aij
2)cos(bh)]

† ai = auto-correlation range; aij = cross-correlation range; pi = proportion 
of class i; b = 2π/λ, where λ is the wavelength of the cosine function. 

‡ The linear, spherical, exponential, and Gaussian models for auto-tran-
siograms were also provided in Ritzi (2000).
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To guarantee that pik(h) is non-nega-
tive and consistent with the experimental 
data, the model-fi tting process of other 
transiograms headed by the same class i 
may need repetitive tuning. Normally, if 
the sill of every transiogram model is set 
to the proportion of the corresponding 
tail class and the section close to the origin 
is appropriately fi tted by choosing a suit-
able model type and range, pik(h) will be 
consistent with the experimental data. The 
non-negative condition is not a concern 
for the other experimental transiograms 
fi tted by mathematical models because 
experimental transiograms are never nega-
tive, which means models fi tting them will 
not be negative.

CASE STUDIES
Data Sets

Case studies here aim to demonstrate 
the features of different types of soil class 
transiograms and the corresponding mod-
eling of those experimental transiograms.

An exhaustive data set was used for 
estimating idealized transiograms and exhaustive real-data transiograms. 
This data set is a large digital soil series map, which covers a part of Iowa 
County, Wisconsin. The county soil map was downloaded from the 
NRCS Soil Survey Geographic Database (SoilDataMart.nrcs.usda.gov/). 
The entire county soil map is too large to display. Therefore, the county 
was divided into several subareas and only one subarea was chosen for the 
purposes of this study. The mapping unit in the original map is the soil 
phase, which is a classifi cation level for the purpose of soil management. 
The soil phases were merged into corresponding soil series, a higher classi-
fi cation level that is based on pedogenic properties. The clipped soil series 
map of the chosen subarea is given in the left side of Fig. 2, which has an 
extent of about 9.6 by 9.6 km2. For the convenience of data analysis, the 
map was discretized into a raster image of about 500 by 500 pixels with a 
pixel size of 20 by 20 m2. The soil map contains 48 soil series, thus 48 by 
48 transiograms may be calculated for the study area in 
each direction. In this study, only some of transiograms 
along axis directions were estimated and analyzed.

Among these soil types, the names, proportions, 
and polygon information for 14 of the 48 are provided 
in Table 2. These data indicate that some soil types (e.g., 
6, 11, and 13) have smaller polygons and some types 
(e.g., 4 and 5) have larger polygons and that each soil 
type accounts for a different area proportion. From Fig. 
2 it can be seen that Soil Type 4 dominates the study 
area and the right boundary. The polygon data shown 
for these soil types may be indicative of the more general 
complexity of polygon shapes for soils. Note that the soil 
type numbers listed in Table 2 are identical with those 
used in the following related fi gures of transiograms.

To estimate experimental transiograms, two 
sparse data sets—one relatively large and the other 
considerably smaller—were used. The larger “sparse” 
data set was obtained by a random sampling, with n = 
12 936, of the large raster soil map (Fig. 2, right). The 

small, sparse data set was obtained using a grid-based sampling with 136 
points (Fig. 3, bottom), from a small soil map with seven soil types (Fig. 
3, top). The seven soil types of the small soil map are distributed relatively 
uniformly within a 4.0- by 1.7-km2 area, which was discretized into an 
80 by 34 raster grid with a pixel size of 50 by 50 m2 (Fig. 3) (also see Li et 
al. [2005]). The purpose of using this small data set with a small number 
of soil types is to demonstrate how to jointly model experimental tran-
siograms for Markov chain simulation, because transiogram models for 
simulation have to be estimated one subset at a time so that they can meet 
the constraint conditions. Here a subset contains all transiograms headed 
by the same class. The reason for using regular data is because they are 
more effi cient for estimating reliable experimental transiograms; other-
wise the small data set of 136 points would be insuffi cient to estimate the 
49 (i.e., 7 by 7) experimental auto- and cross-transiograms. The specifi c 

Table 2. Names, area proportions, and some polygon characteristics of the fi rst 14 
of the 48 soil series (or land types) appearing in the soil map shown in Fig. 2.

No. Name Proportion Polygons
Average area 
of polygons

Average perimeter 
of polygons

no. m2 m
1 Northfi eld, sandy loam 0.1425 168 79 076 1790

2 Dubuque, stony silt loam 0.0192 43 41 559 1308

3 Fayette, silt loam, valleys 0.0081 30 25 049 964

4 Dubuque, deep 0.2389 141 157 945 2362

5 Huntsville, silt loam 0.0163 7 217 117 2846

6 Chaseburg, silt loam 0.0321 88 33 964 1621

7 Orion, silt loam 0.0311 22 131 690 2629

8 Ettrick, silt loam 0.0320 12 248 491 3321

9 Tell, silt loam 0.0004 1 36 844 930

10 Lawson, silt loam 0.0154 15 96 009 1871

11 Northfi eld, loam 0.0661 145 42 518 1195

12 Water 0.0013 8 14 743 1236

13 Gale, silt loam 0.0438 113 36 100 1014
14 Dubuque, ordinary 0.1616 150 100 416 1986

Fig. 2. A large raster soil series map (part of Iowa County, Wisconsin) and a corresponding 
random sample data set obtained by simulated sampling of the map. The map has a total 
of 48 soil series; of these, the hues of the 14 most dominant soil series are given (their cor-
responding names are given in Table 2).
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names for these soil types are not relevant here, so the numbers (i.e., 1, 2, 
3, …, 7) are used instead to represent the seven different soil types.

Estimation of Transiograms from Data
Transiograms can be estimated by counting transition frequencies of 

soil types in a data set with different lags. The equation is given as follows:

1

( ) ( ) ( )
n

ij ij ij
j

p F F
=

= ∑h h h
 [28]

where Fij(h) represents the frequency of transitions from class i to class 
j at the lag h, and n is the total number of soil types. If directional 
asymmetry and anisotropy are not considered, transition frequencies in 
different directions may be pooled together to get multidirectional or 
omnidirectional transiograms.

When transition frequencies are counted from exhaustive data sets, 
the lag h may be set exactly with a zero tolerance width. Thus, estimated 
transiograms are continuous functions of lag separation, which may be con-
veniently expressed as the corresponding number of pixels. As such, they 
may capture considerable fi ne-scale resolution of spatial variability struc-
tures among and between the several soil types. When data are sparse, how-
ever, the number of observed transitions at certain lags will probably not 
be suffi cient to provide an appropriate probability estimate (e.g., estimated 
transition probabilities may be zero or unrealistically high). Therefore, a tol-
erance width should be used when estimating experimental transiograms 
from sparse data. A tolerance width Δh (e.g., 30 m) means that all transi-
tions within a lag interval from (h − Δh) to (h + Δh) (e.g., 400 to 460 m) 
are counted into the frequency of transitions at one lag h (e.g., 430 m). 
Thus, only transition probabilities at a limited number of lags are estimated. 
Consequently, experimental transiograms are composed of a small num-
ber of discrete, typically equally spaced points, similar to the convention 
followed for variogram estimation with sparse data. In this study, because 
raster data were used to estimate transiograms, the pixel number was used 
as a relative distance to represent the lag h.

RESULTS AND DISCUSSION
Idealized Transiograms

To examine the features of idealized transiograms, one-step 
TPMs were estimated from the large soil map in different direc-
tions and transiograms were derived from these TPMs using Eq. 
[15]. Figure 4 shows some of these idealized transiograms in the 
west-to-east direction, all of which are smooth curves. Among these, 
the auto-transiograms are exponential, each with a generally unique 
correlation range. The sill values for these idealized transiograms are 
in accordance with the proportions of the corresponding soil types 
given in Table 2. The shapes of most cross-transiograms are also rea-
sonably consistent with an exponential model, although some of 
them, such as p1,13(h) and p1,11(h) (see Fig. 4d) are not monotoni-
cally increasing, with a peak, or maximum value, occurring before 

reaching the sill value. This peak is a typical indi-
cation of juxtaposition relationships, which results 
when one class frequently occurs in association 
with another class. Examining the transiogram 
sills, it is apparent that these cross-transiograms also 
have sills that are identical to the proportions of the 
corresponding tail classes. For example, the sill of 
p1,14(h) is 0.1616, which is equal to the proportion 
of Soil Type 14 (see Table 2).

Idealized cross-transiograms are asymmet-
ric and, if estimated unidirectionally (i.e., on the 
basis of unidirectional TPMs), are also irreversible. 
These characteristics can be seen from Fig. 5, which 
shows idealized cross-transiograms between Class 1 
and Class 6 in the west-to-east direction and the 
east-to-west direction. Asymmetry indicated by 
the discrepancy between p1,6(h) and p6,1(h) is clear 
because of their different sills. But the discrepancy 
between cross-transiograms p1,6(h) and p1,6(−h) is 
evident only at short lag separations, because these 
two cross-transiograms have equal sills correspond-
ing to the proportion of the same Tail Class 6.

Notice that the slight difference in the sills 
of p6,1(h) and p6,1(−h) shown here (see Fig. 5) 
results from the boundary effect of the limited 

Fig. 3. A small soil map with seven classes and a corresponding 
regular sample data set (n = 136) from this map.

Fig. 4. Idealized transiograms calculated from the one-step transition probability ma-
trix (estimated from the large soil map (shown in Fig. 2) in the west-to-east di-
rection): (a) auto-transiograms; (b), (c), and (d) cross-transiograms. The notation 
like p(i,j) refers to the transiogram pi,j(h), representing a transition probability 
from class i to class j where h is the spatial lag separation vector. The scale along 
the h axis is the number of grid units.
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study area; theoretically, this effect would not occur if the study 
area were infi nitely large. It also should be noted that the ideal-
ized transiograms shown here are similar to the continuous transi-
tion probability models derived using the transition rate matrix 
method as shown in Carle and Fogg (1997) and Weissmann and 
Fogg (1999), since they are all based on the fi rst-order Markovian 
assumption and are essentially the equivalent representations in a 
discrete space.

Although not able to capture non-Markovian effects of spatial 
data, transiograms derived using one-step TPMs provide a simple 
and effi cient way for transiogram estimation and modeling. This 
approach may save considerable time and effort if one-step TPMs 
are available (e.g., from survey line data or training images). A 
requirement for using this approach is that one-step TPMs esti-
mated from data must be reliable; that is, they should refl ect the 
transition relationships among different classes. If survey line data 
or large training maps are not available, or the study area is too 
small compared with the parcel sizes of the soil types, it may be 
diffi cult to obtain reliable one-step TPMs.

Exhaustive Transiograms
To demonstrate typical features of exhaustive transiograms, 

the latter were estimated from the large soil map using a tolerance 
width of zero. Both unidirectional and “four-directional” transio-
grams (i.e., computed as the average of the transiograms calculated 
in the four cardinal directions—east, west, south, and north) were 
estimated. These transiograms provide an opportunity to gain 
general understanding and insight into the spatial structure of the 
variability in soil types, and more importantly, it demonstrates 
typical features of real transiograms and the spatial features that 
cannot be captured with a fi rst-order Markovian characterization.

Shape and Periodicity
Figure 6 shows exhaustive real-data auto- and cross-tran-

siograms estimated from the large soil map in an easterly direc-
tion. It can be seen that all auto-transiograms shown here can be 
reasonably described using exponential models. 
Note that the auto-transiogram p5,5(h) has a 
longer auto-correlation range than the other soil 
types, which is a consequence of its large average 
polygon size (see Table 2). Note also that the fl uc-
tuations in auto-transiograms are relatively weak 
compared with those in cross-transiograms.

Apparent fl uctuations can be seen in cross-
transiograms, especially with an expanded h axis 
(see Fig. 6d). These cross-transiograms are approxi-
mately consistent with exponential or spherical 
models for lags less than the fi rst peak, although 
the spatial patterns and periodicities are typically 
distinct for each cross-transiogram. A periodic pat-
tern in transition frequencies indicates character-
istic scales in spatial patterns of soil types, such as 
occurs in swell–swale landscape sequences (Haws et 
al., 2004) (i.e., parcels of soil types appear in a space 
with a spatial regularity or rhythm).

“Four-directional” (not truly omnidirec-
tional) transiograms are displayed in Fig. 7. As a 
consequence of the pooling across directions, these 
average curves are considerably smoother than 

their unidirectional counterparts. As a consequence of the averag-
ing process, the periodicities displayed in the four-directional cross-
transiograms generally differ from the corresponding unidirectional 
cross-transiograms. Four-directional or omnidirectional transio-
grams may be used in Markov chain simulations when it is deemed 
that anisotropies and directional asymmetries are not of interest.

Correlation Range and Non-Markovian Effect
Examination of the correlation ranges associated with the 

exhaustive transiograms in Fig. 6 and 7 show that some of the auto-
transiograms have a principal autocorrelation range of about 15 to 
30 pixels (i.e., 300–600 m). That is, they fi rst decrease quickly to a 
“principal range,” and then, rather than remaining stable at a fi xed 
level, gradually decrease and [see p4,4(h) and p1,1(h) in Fig. 6a and 
7a] approach their theoretical sills (i.e., the proportions of the corre-
sponding classes). This principal range characteristic and subsequent 
transition to the theoretical value differs from that of an idealized 
auto-transiogram, which reaches its theoretical sill quickly and sta-
bilizes at this level with increasing lags. Figure 8 contrasts these two 
types of transiograms, demonstrating the differences between each. 

Fig. 5. Illustration of the asymmetry and irreversibility of ideal-
ized transiograms. The transiograms p(1,6) and p(6,1) [re-
ferring to  p1,6(h) and p6,1(h), respectively] are estimated 
along the west-to-east direction, whereas the transiograms 
p(1,6)– and p(6,1)– [referring to p1,6(−h) and p6,1(−h), 
respectively] are estimated along the east-to-west direction.

Fig. 6. Exhaustive transiograms estimated from the large soil map (shown in Fig. 2) in 
the west-to-east direction: (a) and (b) auto-transiograms; (c) and (d) cross-tran-
siograms. The right column [i.e., (b) and (d)] have longer lags so as to demon-
strate irregular fl uctuations.
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The principal range of an exhaustive auto-transiogram is a refl ection 
of the fi rst-order dependence (i.e., fi rst-order Markovian property) 
of the data and the continuing decrease thereafter is a consequence 
of the high-order dependence (i.e., non-Markovian property) of the 
data that is not captured in an idealized transiogram.

Cross-correlation ranges of exhaustive cross-transiograms are 
diffi cult to discern because of the strong fl uctuations in these curves. 
If the lag immediately subsequent to the fi rst peak is regarded as 
the principal range of an exhaustive cross-transiogram, then these 
fi gures suggest that the principal ranges (see Fig. 6c) lie between 
about 10 and 65 pixel lengths (i.e., 200–1200 m) in the west-
to-east direction. The irregular periodicities of these cross-transio-

grams (see Fig. 6d and 7d) are a strong indication 
of the existence of non-Markovian effects among 
different soil types, which is not captured by ideal-
ized cross-transiograms. Some cross-transiograms, 
such as p1,6(h) in Fig. 7c, have an obvious peak 
near the origin. This demonstrates that Soil Types 
1 and 6 are spatially associated (i.e., are frequently 
found in close proximity).

In addition, some exhaustive cross-transio-
grams, such as p1,2(h), reveal two ranges whereas 
the corresponding idealized cross-transiograms 
have only one (see Fig. 8), which refl ects the fact 
that exhaustive transiograms may contain long-
distance cross-correlations. It is also apparent 
that near the origin (i.e., for lag distances <10 
pixels), idealized auto-transiograms correspond 
very well to their exhaustive auto-transiogram 
counterparts (see Fig. 8). This implies that the 
mean polygon size of a class can be estimated 
from exhaustive auto-transiograms.

Sill and Tail Class Proportion
Recall that the sill of an idealized transiogram 

is equal to the corresponding tail class proportion. Examination of 
the sills of exhaustive auto-transiograms (Fig. 6 and 7) reveals that 
they also approach the proportions of the corresponding soil types, 
although perhaps more gradually. For example, p1,1(h) reaches the 
proportion of Soil Type 1 (i.e., 0.1425) at a lag of 75 pixels in Fig. 6 
and at a lag of 160 pixels in Fig. 7, with slight fl uctuations about this 
level. The strong fl uctuations evident in exhaustive cross-transio-
grams make it diffi cult to identify sill values, but these values should 
correspond to the average amplitude in the fl uctuating curves after 
the fi rst peak. Upon examination, it can be seen that the sill val-
ues so defi ned are approximately equal to the proportions of the 
corresponding tail soil types. In general, as long as the area of the 
soil map is large enough, the sills of exhaustive transiograms should 
approach, or fl uctuate about, the proportions of the corresponding 
tail classes. Thus, exhaustive transiograms provide a measure of tail 
class proportions.

Asymmetry and Irreversibility
Figure 9 shows four exhaustive cross-transiograms between 

Soil Types 1 and 2, which were estimated from the large soil map 
in the west-to-east direction [i.e., p2,1(h) and p1,2(h)] and the 
east-to-west direction [i.e., p2,1(−h) and p1,2(−h)]. It is evident 
that p2,1(h) ≠ p1,2(h) ≠ p2,1(−h) ≠ p1,2(−h). The cross-transio-
grams p2,1(h) and p2,1(−h) have the same theoretical sill (i.e., 
the proportion of Soil Type 1), which is 0.1425, but their curve 
patterns (detailed fl uctuations) are different; whereas p2,1(h) 
and p1,2(−h) have similar curve patterns (peaks and troughs), 
but their theoretical sills, which are actually their curve heights 
at different lags, are all different. Further, p2,1(h) and p1,2(h) 
have no common characteristics. Such general features exist for 
any two soil types, illustrating the properties of asymmetry and 
irreversibility of unidirectional cross-transiograms.

The asymmetry property of cross-transiograms between 
two classes [i.e., pij(h) ≠ pji(h)] holds for both unidirectional 
and multidirectional cross-transiograms. This follows since 
their theoretical sills, the proportions of class i and j, are typi-

Fig. 7. Exhaustive transiograms estimated from the large soil map (shown in Fig. 2) 
by pooling transitions along the four cardinal (westward, eastward, southward, 
and northward) directions: (a) and (b) auto-transiograms; (c) and (d) cross-tran-
siograms. The right column [i.e., (b) and (d)] have longer lags to demonstrate 
irregular fl uctuations.

Fig. 8. A comparison of idealized transiograms and exhaustive 
real-data transiograms as estimated from the large soil map 
(shown in Fig. 2) in the west-to-east direction.
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cally different. When transition frequencies in opposite direc-
tions are pooled together, however, cross-transiograms pij(h) 
and pji(h) have the same patterns. Figure 10 shows the four-
directional transiograms between Soil Types 1 and 2. Clearly, 
p2,1(h) and p1,2(h) have the same curve shape but different 
sills, and their quantitative relationship satisfi es Eq. [7].

The asymmetric property of cross-transiograms demonstrates 
the capability of characterizing juxtaposition relationships among 
classes, in contrast to symmetric spatial measures. For example, con-
sider a hypothetical situation in which Class A has a higher occur-
rence frequency (e.g., 100), whereas Class B has a lower occurrence 
frequency (e.g., 10), and further assume that Class B always occurs 
with Class A as neighbors. In such a situation, it is 
expected that the transition probability for pA,B(h) 
at a short lag h will be smaller than that for pB,A(h). 
Such juxtaposition relationships between classes 
can be detected by cross-transiograms, as can be 
clearly seen in Fig. 9, which shows that p2,1(h) > 
p1,2(h). The irreversible property of unidirectional 
cross-transiograms (i.e., that the cross-transiogram 
is not an even function) means that these functions 
can detect the directional asymmetry of class occur-
rence sequences. Although cross-transiograms pij(h) 
and pij(−h) have the same theoretical sill, their dif-
ferent curve patterns, particularly differences in the 
number, lag distance, and magnitude of peaks and 
troughs, reveal the directional asymmetries.

Modeling Experimental Transiograms
Figure 11 shows experimental transiograms 

estimated with a tolerance width of two pixels (i.e., 
Δh = 2), which means that the average transition 
probability per fi ve pixels along the h axis is plot-
ted. Several parameters must be estimated to fi t 

experimental transiograms with basic mathematical models. These 
include the sill (i.e., proportions of tail classes), correlation range, 
and model type. The tail class proportions can be estimated from 
the sampled data set. The correlation ranges and model types can 
be approximately discerned from the experimental transiograms. 
The resulting estimates of these three parameters are demonstrated 
in association with the modeled transiograms in Fig. 11, where 
three of the transiograms are described with exponential models 
and the remaining with a spherical model. It is apparent that these 
basic mathematical models have diffi culty in capturing the com-
plex features (i.e., peaks, troughs, and sometimes double ranges) 
of experimental transiograms. This is especially obvious in p1,4(h) 
and p2,1(h) (see Fig. 12), where the former manifests two ranges 
and the latter has an irregular periodicity.

With use of a suitable tolerance width and a tolerance angle 
(the latter is not used here), the data points needed for reliable 
estimation of experimental transiograms can be signifi cantly 

Fig. 9. Exhaustive cross-transiograms between Soil Types 1 and 2 
estimated from the large soil map (shown in Fig. 2) along the 
west-to-east direction and the east-to-west direction. Transio-
grams p(1,2)– and p(2,1)– [referring to p1,2(−h) and p2,1(−h), 
respectively] are estimated along the east-to-west direction.

Fig. 10. Exhaustive cross-transiograms between Soil Types 1 and 
2 estimated from the soil map by pooling transitions along 
the four cardinal directions (westward, eastward, south-
ward, and northward) together.

Fig. 11. Four experimental transiograms estimated from the large random data set 
of soil types along the west-to-east direction with a tolerance width of two 
pixels and the corresponding mathematical models. Sills were set to the pro-
portions of the corresponding tail classes.
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reduced. It should be noticed, however, that with increasing toler-
ance width, the number of points constituting the experimental 
transiogram decreases and thus some of the information is lost. 
Therefore, a trial-and-error approach may be necessary to identify 
a suitable tolerance width.

Transiogram models used for Markov chain simulation must 
adhere to the theoretical constraints outlined above. Therefore, 
each subset of experimental transiograms headed by the same class 
should be jointly modeled as an entirety so as to meet the summing-
to-1 condition. Figure 12 shows some four-directional experimen-
tal transiograms headed by Soil Type 3, estimated from the small 
regular data set (i.e., 136 points) with seven soil types. Exponential 
models and spherical models were used to fi t these experimental 
transiograms. Sills of the transiogram models were set to the propor-
tions of the corresponding tail classes in the data set, with the ranges 
and model types discerned from the corresponding experimental 
transiograms. These basic mathematical models approximately cap-
ture the general trends of the experimental data, even for the model 
calculated as a difference (i.e., p3,1(h), which was calculated using 
Eq. [27]). This latter transiogram is obviously well characterized. It 
is recommended that the most complex experimental transiogram 
corresponding to a specifi c head class is modeled as the difference 
indicated in Eq. [27], not only to save time but perhaps to improve 
the correspondence with experimental cross-transiograms. Because 
Markov chain simulations generally use only transiogram values 
near the origin (i.e, small h), the accuracy of the model fi t to the 
fi rst few lag intervals should be maximized. Although a perfect fi t is 
not possible or strictly necessary using mathematical models, such 
models can provide a general understanding of the soil spatial varia-
tion in the study area. For example, in Fig. 12, p3,3(h) shows that the 
auto-correlation of Soil Type 3 can be described by an exponential 
model with an auto-correlation range of 12 pixels (i.e., 600 m), and 
p3,5(h) indicates that Soil Type 3 rarely, if ever, occurs in proximity 

to Soil Type 5, as evinced by the corresponding long 
cross-correlation range and spherical curve shape.

It is worth mentioning the differences 
between modeling transiograms and vario-
grams. Transiograms do not have (and theo-
retically should not have) a nugget effect for 
exclusive classes. Conventionally in geostatis-
tics, experimental variograms with the shapes of 
p3,1(h) and p3,6(h) (see Fig. 12) are fi tted with 
a nugget effect model. This would be improper 
in transiogram modeling of exclusive classes for 
Markov chain simulation, however, because it 
constitutes a violation of the fact that these val-

ues represent transition probabilities and as such must satisfy 
the axiom of summing-to-1. Therefore, the origin (0,0) must 
be included, which implies that p3,1(h) and p3,6(h) both have 
short correlation ranges.

Apparently, there are some irregular periodicities in experi-
mental transiograms. For example, p3,4(h) in Fig. 12 shows two 
peaks and two troughs. A cosine–Gaussian hole-effect model 
was used to model this pattern, which is shown in Fig. 13. This 
model provides a reasonable description of the fi rst peak and 
trough of the experimental transiogram, but the second trough is 
ignored. Fitting a basic model to such a pattern is quite diffi cult 
due to the complexity and irregularity in curve shape, which may 
be quite diverse for different experimental transiograms; how-
ever, accurately fi tting the experimental transiograms near the 
origin would take priority if the model data are to be used for 
Markov chain simulation or to characterize a complex relation-
ship between classes.

CONCLUSIONS
The transiogram provides a general concept for represent-

ing various transition probability diagrams. It not only provides 
a tool for characterizing spatial heterogeneity of categorical 
soil variables, but also represents a widely applicable transition 
probability estimation approach from different data types. For 
describing interclass relationships, cross-transiograms have spe-
cial capabilities that symmetric spatial measures do not, i.e, the 
ability to characterize juxtaposition relationships and directional 
asymmetry of class distributions.

Although idealized transiograms are relatively simple, they 
still capture the basic spatial correlation properties of soil classes, 
including some juxtaposition tendencies. Given the simplicity 
in deriving idealized transiograms and their availability in some 
situations (e.g., from borehole data), it is reasonable that these be 

Fig. 12. Experimental transiograms headed by Soil Type 3 and their corresponding 
models, estimated from the small grid data set (i.e., 136 points). Sills were set 
to the proportions of the corresponding tail classes in the data set.

Fig. 13. An example of fi tting an experimental 
cross-transiogram using a cosine–Gaussian 
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used in characterizing subsurface facies and providing transition 
probability models for geostatistical simulations. Idealized transio-
grams, however, apparently miss the more complex features of spa-
tial autocorrelations and interclass relationships that are typically 
present in spatial multinomial classes such as soil types. The more 
complex features are defi ned here as the non-Markovian effect. 
Also, because of the inherent diffi culty in estimating one-step 
transition probabilities from sparse point samples, idealized tran-
siograms have limited uses outside subsurface characterization. 
Nevertheless, understanding idealized transiograms is important 
for understanding and interpreting real-data transiograms.

While an idealized transiogram represents only a fi rst-order 
stationary transition probability model, a real-data transiogram 
captures considerably more information regarding the spatial 
structure of variability, as evidenced by the presence of features 
such as apparent peaks, troughs, and sometimes multiple ranges. 
These features are most pronounced when computing exhaustive 
transiograms, as was done here for a large soil type map, which 
demonstrated the ability to capture the so-called “non-Markovian 
effect,” with some auto-transiograms having two ranges and cross-
transiograms generally having irregular peaks and troughs.

Experimental transiograms may be approximately mod-
eled using basic mathematical models, but to fi t the complex 
features of experimental transiograms, more complex models 
are needed. When transiogram modeling is done for the pur-
pose of Markov chain simulations, experimental transiograms 
need to be modeled jointly subset by subset so that constraint 
conditions can be satisfi ed.

Prospectively, transiograms have the following uses: (i) 
characterizing spatial variability of categorical soil variables, 
(ii) providing parameter inputs to Markov chain conditional 
simulation models, and (iii) data mining of digital soil maps 
(or databases). Further efforts will focus on developing practi-
cal software for estimating transiograms from various data sets 
and performing automatic model calibration.
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