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In Markov chain random field (MCRF) simulation of categorical spatial variables with
multiple classes, joint modeling of a large number of experimental auto and cross-
transiograms is needed. This can be tedious when mathematical models are used to fit the
complex features of experimental transiograms. Linear interpolation can be used to perform
the joint modeling quickly regardless of the number and the complexity of experimental
transiograms. In this paper, we demonstrated the mathematical validity of linear interpolation
as a joint transiogram-modeling method, explored its applicability and limitations, and tested
its effect on simulated results by case studies with comparison to the joint model-fitting
method. Simulations of a five-class variable showed little difference in patterns for inter-
polated and fitted transiogram models when samples were sufficient and experimental
transiograms were in regular shapes; however, they neither showed large difference between
these two kinds of transiogram models when samples were relatively sparse, which might
indicate thatMCRFswere not much sensitive to the difference in the detail of the two kinds of
transiogram models as long as their change trends were identical. If available, expert knowl-
edge might play an important role in transiogram modeling when experimental transiograms
could not reflect the real spatial variation of the categorical variable under study. An extra
finding was that class enclosure feature (i.e., a class always appears within another class) was
captured by the asymmetrical property of transiograms and further generated in simulated
patterns, whereas this might not be achieved in conventional geostatistics. We conclude that
(i) when samples are sufficient and experimental transiograms are reliable, linear interpolation
is satisfactory and more efficient than model fitting; (ii) when samples are relatively sparse,
choosing a suitable lag tolerance is necessary to obtain reliable experimental transiograms for
linear interpolation; (iii) when samples are very sparse (or few) and experimental transiograms
are erratic, coarsemodel fitting based on expert knowledge is recommended as a better choice
whereas both linear interpolation and precise model fitting do not make sense anymore.

Keywords: categorical spatial variable; expert knowledge; transiogram; Markov chain
random field

1. Introduction

A one-step transition probability means a probability of transitioning from one state to
another (or itself) in a single step in time (or space). AMarkov chain is said to be stationary if

International Journal of Geographical Information Science
Vol. 24, No. 6, June 2010, 821–839

*Corresponding author. Email: weidong6616@yahoo.com

ISSN 1365-8816 print/ISSN 1362-3087 online
# 2010 Taylor & Francis
DOI: 10.1080/13658810903127991
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
o
n
n
e
c
t
i
c
u
t
]
 
A
t
:
 
0
1
:
0
0
 
1
7
 
A
p
r
i
l
 
2
0
1
0

mailto:weidong6616@yahoo.com
http://www.informaworld.com


its transition probabilities are independent of specific time (or space) index. The one-step
transition probability matrix (TPM), which consists of all of the relevant one-step transition
probabilities among states of a discrete variable, has been traditionally used as a correlation
measure and parameter input in Markov chain analysis of one-dimensional time (or space)
series in many fields, such as geography (Brown 1970, Bell 1974, Collins et al. 1974, Tang
et al. 2007), geology (Potter and Blakely 1967), biology, and ecology (Horn 1975, Balzter
2000). However, for conditional Markov chain simulation of categorical spatial variables
(e.g., various landscape types) based on sparse sample data, one-step TPMs are not sufficient
anymore because transition probabilities at different lag distances are needed for estimating
the states at unsampled locations. Although idealized continuous-lagged transition prob-
ability functions (called idealized transiograms) may be inferred from one-step TPMs, on the
one hand, they are not sufficient to reflect the complex spatial heterogeneity of categorical
spatial variables, and, on the other hand, it is also difficult, if not impossible, to estimate one-
step TPMs from sparse sample data. For solving these problems, the transiogram was
proposed by Li (2006) as a spatial relationship measure of categorical spatial variables.
Except for serving as the accompanying spatial measure of Markov chain geostatistics
(MCG), transiograms also can be used to characterize the spatial variability of categorical
spatial variables as an independent spatial metric.

The transiogram may generally refer to various transition probability curves over dis-
tance lags, of which some had appeared in earlier studies in spatial analysis of geological
facies (Schwarzacher 1969, Luo and Thomsen 1994, Luo 1996, Carle and Fogg 1997, Ritzi
2000). Transiograms may be simply classified into three types – experimental transiograms
(measured directly from sample data), exhaustive transiograms (measured from images or
maps), and idealized transiograms (derived from single-step transition probabilities and/or
domain knowledge based on the first-order Markovian assumption); their respective features
and properties were demonstrated in Li (2007a). Among these different kinds of transio-
grams, experimental transiograms are closely attached with MCG because their models are
directly used in Markov chain random field (MCRF) models for estimating the conditional
probability distribution of a categorical variable at an unsampled location (Li 2007b).

TheMCRF-based sequential simulation (MCSS) algorithm has proved to be an effective
method for simulating categorical variables with multiple classes (e.g., soil classes) and
complex interclass relationships (e.g., neighborships) (Li and Zhang 2007, Zhang and Li
2008). It demonstrated obvious advantages over sequential indicator simulation – the
conventionally used method for simulating categorical variables. For example, MCSS
generates polygon-like patterns in simulated realizations, which not only have higher
accuracy but also obey the complex interclass relationships conveyed by input transiogram
models (see Li and Zhang 2007). Thus one does not need to use post-processing methods as
suggested by some researchers (Journel and Xu 1994, Goovaerts 1996, Deutsch 1998, 2006)
to further improve the patterns of simulated realizations. MCSS also does not have the order
relation violation problem in estimating conditional probability distributions of classes.
However, to conduct Markov chain simulation of categorical spatial variables, one must
first make a joint modeling of experimental auto- and cross-transiograms to obtain a valid set
of transiogrammodels. For example, to simulate 10 classes, 100 auto- and cross-transiogram
models are needed. Although some of them may be inferred from others by making use of
the properties of transition probabilities, there are still at least 45 transiogram models to
construct from scratch based on experimental transiograms and expert knowledge. This
usually means a large work load in a tedious process, particularly when experimental
transiograms have complex shapes to fit by using complex (or nested) mathematical models.
Hence, how to efficiently get a valid set of transiogram models is a crucial issue in MCG.
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In indicator kriging (Deutsch and Journel 1998), the indicator variogram served as the spatial
correlation measure. Experimental indicator variograms were normally fitted by some recom-
mended mathematical models such as spherical, Gaussian, and exponential models. Some of
them have been adapted for fitting experimental transiograms (Li 2007a). Unfortunately,
conventional indicator geostatistics does not provide an adequate method for joint modeling of
auto- and cross-indicator variograms of categorical variables (Deutsch 1998, 2006, Machuca-
Mory et al. 2008). Thus it normally ignores cross correlations among classes when modeling
categorical variables. Carle and Fogg (1997) suggested the transition rate method to jointly
model auto- and cross-experimental transiograms in the transition probability-based indicator
geostatistics for implementing full indicator cokriging. Amajor limitation of the method is that it
is based on the first-order Markovian assumption and thus implicitly assumes that class patch
sizes (e.g., length and width) conform to an exponential distribution. This makes the method not
widely applicable tomany categorical spatial variables; for example, it apparently cannot be used
to fit complex features such as multiple ranges and periodicity of experimental transiograms,
which may appear in many situations and have to be fitted by complex models (e.g., nested or
hole-effect models) (Li 2007a). When experimental transiograms are reliably estimated from a
large number of data, their fluctuations tend to be smooth because of more data pairs and shorter
lag tolerance; such smooth fluctuations normally represent the complex spatial heterogeneity of
the categorical variable under study and therefore should not be ignored as noise.

MCG ismuch simpler in its estimators (i.e.,MCRFmodels) than aforementioned indicator
kriging approaches and thus provides the flexibility of using simpler methods to jointly model
experimental transiograms merely based on the basic properties of transition probabilities. For
a matrix of experimental transiograms P̂ðhÞ ¼ ½p̂ijðhÞ�, joint modeling needs to be done only
row by row, rather than the whole matrix together. Thus, constraint conditions apply only to
individual rows. Li (2007a) suggested a mathematical model-fitting procedure for joint
modeling of experimental transiograms, which requires that one transiogram model take the
remaining part of unity minus other models in a row of a transiogram model matrix. Although
it is simple theoretically and methodologically, this method still can be very tedious for precise
fitting of a large number of experimental transiograms, and it is also difficult to obtain a set of
perfectly fitted models when experimental transiograms have complex shapes. Li and Zhang
(2005) also proposed a simpler fast joint modeling method – linear interpolation of experi-
mental transiograms. Thismethodwas found to be practical when samples can provide reliable
experimental transiograms (e.g., no steep fluctuations at used lags). When reliable experi-
mental transiograms are available, not only can this method largely release the transiogram-
modeling burden in Markov chain simulation of categorical variables but it also provides a
way to incorporate complex features of reliable experimental transiograms into simulations.
However, it was not mathematically proved whether such a simple method could always
provide a valid set of transiogram models. Therefore, a mathematical demonstration in its
validity and some case analyses in its applicability and limitations are necessary to clarify
related confusions and guide its application. In addition, such a fast method may also be
applicable to modeling other spatial measures.

The objectives of this study are (1) to prove the validity and applicability of linear interpola-
tion with comparison to model fitting in transiogram modeling, (2) to test the sensitivity of
Markov chain simulation to transiogram models derived by the two different methods with
increasing numbers of samples, and (3) to find out the practical ways of joint transiogram
modeling when experimental transiograms vary from reliable to unreliable. The rest of this
paper is arranged as follows: We first introduce the constraint conditions for joint modeling of
experimental transiograms and their rationality in Section 2. In Section 3 we prove that linear
interpolation mathematically meets all the constraint conditions and is therefore rational. Then in

International Journal of Geographical Information Science 823

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
o
n
n
e
c
t
i
c
u
t
]
 
A
t
:
 
0
1
:
0
0
 
1
7
 
A
p
r
i
l
 
2
0
1
0



Section 4 we show the applicability and limitations of linear interpolation by estimating transio-
grams from three sample sets of a binary variable with different numbers of samples. We further
conduct some simulations of a five-class variable to demonstrate and analyze the sensitivity of
Markov chain simulation to different kinds of transiogrammodels obtained by linear interpolation
and model fitting in Section 5. Finally we conclude this paper by summarizing the case studies
and making recommendations in the usage of the two transiogram joint modeling methods.

2. Constraint conditions

In Markov chain simulation of categorical spatial variables, the modeling of experimental
transiograms must meet some constraint conditions to generate a valid set of auto- and cross-
transiogram models to ensure a proper simulation and valid results. These constraint
conditions are simply some basic properties of transition probabilities and categorical spatial
variables. Three constraint conditions were defined for transiogram modeling in Li (2007a):
(a) non-negative, (b) transiograms headed by the same class (i.e., a row of elements in a
transiogram matrix) summing to one at any used lags, and (c) no-nugget effect.

Assuming PðhÞ ¼ ½pijðhÞ� is a TPM at the distance lag h (or a matrix of transiogram
models), we have the first constraint condition defined as

pijðhÞ � 0; (1)

the second constraint condition defined as

Xn
j¼1

pijðhÞ;1; (2)

and the third constraint condition defined as

pij 0ð Þ ¼ 0 "i � j and pii 0ð Þ ¼ 1 (3)

where i, j = 1, . . . , n, indicate the numbers of n classes, and pijðhÞ represents a transiogram,
which is defined as a transition probability function from state i to state j across the distance
lag h. Any transiogram-modeling method that meets the above conditions can be used in
Markov chain modeling of categorical variables.

The non-negative condition is required because negative probabilities are simply irra-
tional. The second condition is also required because it is the basic property of a valid TPM
to have its row elements sum to one. As to the third condition, it is not strictly required in
Markov chain modeling as long as the summing-to-one condition can be met at all used lag
values. However, it will be better to designate this condition as a constraint for joint
transiogrammodeling for the following reasons: First, classes of categorical spatial variables
are mutually exclusive; that means it is physically irrational for their auto-transition prob-
abilities at the same location to be less than one and for their cross-transition probabilities at
the same location to be nonzero. Second, in geostatistics, the nugget effect in variogram
models is thought to be caused by measurement errors and/or short-range variations missed
by sparse sample data, and therefore in variogram modeling it may be retained or simply
replaced by a short-range model (or a short-range component in a nested model) (Goovaerts
1997, p. 101–103). So it is proper to discard nugget effects in practical use by honoring
origin points in transiogram modeling because measurement errors (e.g., sample misclassi-
fication) in categorical variables are actually unquantifiable (or may be ignored). Third, not
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using nugget effects also simplifies the transiogram joint modeling procedure. In general, the
three constraint conditions for joint transiogram modeling have their rationalities and are
also sufficient to ensure proper Markov chain modeling.

3. Joint transiogram modeling

3.1. Mathematical rationalities of linear interpolation

An experimental transiogram p̂ijðhÞmay be directly estimated from sample data by counting
the transition frequency from a class to itself or another with different lags (e.g., numbers of
pixels for raster data) by the following equation:

p̂ijðhÞ ¼
fij hð ÞPn
k¼1 fik hð Þ (4)

where fijðhÞ represents the frequency of transitions from class i to class j at the lag h and n is
the total number of classes. To acquire reliable experimental transiograms from sparse
samples, one has to consider a lag tolerance �h around each lag value, which may be
decided by users according to the density of samples.

Assume hk and hk + 1 are two specific neighboring lag values in an experimental
transiogram p̂ijðhÞ with hk + 1 . hk and p̂ijðhkÞ and p̂ijðhkþ1Þ the transition probability
values measured from sample data at these two corresponding lags (Figure 1). The linear
interpolation equation for calculating the transition probability value pijðhÞ at the lag h
between lags hk and hk + 1 can be expressed as

pij hð Þ ¼
p̂ij hkð Þ � hkþ1 � hð Þ þ p̂ij hkþ1ð Þ � h� hkð Þ

hkþ1 � hk
(5)

(Li and Zhang 2005, Zhang and Li 2008). The above equation can meet all the three
constraint conditions listed in the last section. The following proves these points:

(a) Non-negative: Measured transition probabilities from samples are always non-
negative, thus we have p̂ijðhkÞ � 0 and p̂ijðhkþ1Þ � 0. According to the definition
of the linear interpolation equation, we also have hkþ1 > hk , hkþ1 � h and h � hk
(see Figure 1). Thus, it is easy to see that in the right-hand side of Equation (5) the
numerator is non-negative and the denominator is positive; then we have pijðhÞ � 0,
that is, linear interpolation meets the non-negative condition.

Figure 1. Linear interpolation of an experimental cross-transiogram (dots for measured values, solid
line for interpolated model).
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(b) Summing-to-one: Assume P̂ðhkÞ ¼ ½p̂ijðhkÞ� and P̂ðhkþ1Þ ¼ ½p̂ijðhkþ1Þ� are twomea-
sured valid transition probability matrices at lags hk and hk+1, respectively (here
‘valid’ means the transition probabilities are correctly calculated from transition
frequencies estimated from samples). Then they have the basic property that ele-
ments in each row sum to one, that is,

Pn
j¼1 p̂ijðhkÞ;1 and

Pn
j¼1 p̂ijðhkþ1Þ;1. From

Equation (5) we further have

Xn
j¼1

pij hð Þ ¼
Xn
j¼1

p̂ij hkð Þ � hkþ1 � hð Þ þ p̂ij hkþ1ð Þ � h� hkð Þ
hkþ1 � hk

� �

¼ 1

hkþ1 � hk
� hkþ1 � hð Þ �

Xn
j¼1

p̂ij hkð Þ þ h� hkð Þ �
Xn
j¼1

p̂ij hkþ1ð Þ
" #

¼ 1

hkþ1 � hk
� hkþ1 � hð Þ þ h� hkð Þ½ �;1

(6)

This proves that linear interpolation surprisingly meets the summing-to-one condition
though it is very simple. This also can be seen from Figure 2, where interpolated experi-
mental auto- and cross-transiograms for a binary variable always meet on the 0.5 probability
line, that is, they sum to one.

(c) No-nugget effect: By counting the origin points (i.e., (0, 1) for auto-transiograms and
(0, 0) for cross-transiograms) into experimental transiograms, linear interpolation
meets the no-nugget-effect condition. This is because linear interpolation respects
measured values exactly (see Figure 1): From Equation (5), one can easily get
pijðhÞ ¼ p̂ijðhkÞ when h = hk and pijðhÞ ¼ p̂ijðhkþ1Þ when h = hk+1. That means
we have pijð0Þ ¼ 0 and piið0Þ ¼ 1 when h = 0.

Therefore, mathematically linear interpolation is suitable for joint transiogrammodeling,
and it can provide a valid set of transiogram models for Markov chain simulation of
categorical spatial variables. Of course, mathematical validity of a method does not mean
it is always good to use at any situation in real-world cases. As demonstrated later, when
samples are very sparse and cannot provide reliable experimental transiograms, this method
is not recommended.

Figure 2. Interpolated experimental auto- and cross-transiograms estimated from a binary variable.
Each pair has a common head class and sums to 1 at any lag values. (A) From 487 samples with a lag
tolerance of 12-p length; (B) From 97 samples with a lag tolerance of 12-p length.
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3.2. Model fitting

Assume pikðhÞ is a transiogram model from the transiogram model matrix PðhÞ ¼ ½pijðhÞ�.
To get a valid set of transiogram models for Markov chain simulation, one needs to conduct
the model fitting of experimental transiograms subset by subset (i.e., row by row in a
transiogram matrix, each row has a common head class). For each subset one model must
take the left part of unity minus others as

pik hð Þ ¼ 1�
Xn
j¼1
j�k

pij hð Þ (7)

so that the summing-to-one condition is ensured. One can ensure the other two constraint
conditions to be met simply by including the origin points into experimental transiograms and
tuning fitted models. Mathematical models for fitting experimental variograms may be
adapted to fit experimental transiograms. Li (2007a) provided some basic mathematical
models for transiogram modeling, which include linear, spherical, exponential, Gaussian,
cosine-exponential, and cosine-Gaussian models.

Because experimental transiograms are usually estimated omnidirectionally (or bidir-
ectionally), they and consequently their models meet the property of

pij hð Þ ¼
pj
pi
� pji hð Þ (8)

where pi and pj are proportions of class i and class j, respectively. Apparently, if pjiðhÞ, pi, and
pj are all known, one can use Equation (8) to infer the transiogram model pijðhÞ. Thus, using
Equations (7) and (8) and class proportion data, one may fit only 10 experimental transio-
grams to get all of the 25 (auto and cross) transiogram models for five classes. In this study,
we use class proportions of sample data to approximately serve as the real class proportions
in the simulation domain in case studies.

4. Applicability and limitations

Data of a binary variable were used to test the applicability and limitations of linear
interpolation and model fitting in joint modeling of experimental transiograms. Estimated
experimental transiograms from three different sample sets and their models are shown in
Figure 3. In the first row (Figure 3 A1, A2, and A3), a dense sample set (487 points) and three
different lag tolerances (i.e., 12, 6, and 3 p length) were used to obtain three versions of an
experimental cross-transiogram (here we regard them as three experimental transiograms).
An exponential model with a sill of 0.43 and a range of 35 p (i.e., 35 pixels) length was used
to fit all three of them. It can be seen that these experimental transiograms with different lag
tolerances have little difference. This means that when sample data are sufficient, very
reliable experimental transiograms can be estimated and their features should be the real
reflection of spatial variation of the variable under study. Although the exponential model
can basically fit all the three simple experimental transiograms well, it still misses the
irregular convex and concave at medium and high lags. This indicates that for even such
simple experimental transiograms a perfect fitting using a mathematical model is not
feasible. However, linear interpolation perfectly captures all features; this means that linear
interpolation should be appreciated under this situation.
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When the number of samples decreases to 97, the experimental transiogram estimated
with a small lag tolerance (Figure 3 B3) shows steep fluctuations. But when the lag tolerance
increases to 12 p length (Figure 3 B1), the experimental transiogram becomes reliable with
comparison to those estimated from the dense sample set. This means linear interpolation is
still proper to use as long as a suitable lag tolerance is chosen to decrease the steep
fluctuations of the experimental transiogram. In fact, when an experimental transiogram
steeply fluctuates, not only linear interpolation loses its charm, it is also not easy to decide
the fitting model’s type (e.g., exponential, spherical, or Gaussian) and parameters.

When sample data are very few (here decrease to 19 points), experimental transiograms
become unreliable even if the lag tolerance increases to a very large value (Figure 3 C). The
transiogram model provided in row C of Figure 3 is not fitting to the experimental ones
because the latter do not provide sufficient information for a confident modeling. On the
contrary, it is an assumed model based on the knowledge from the dense or medium sample
set. Apparently linear interpolation is not proper to use anymore for this small sample set in the
sense of modeling. However, simply using a mathematical model to fit the values of such an
unreliable experimental transiogram also does not make sense, even if the fitting is statistically
optimal. Under this situation, a proper choice should be to choose a simple mathematical
model based on expert knowledge to ‘coarsely fit’ the experimental transiogram because
anyway the exact features of the spatial variation of the variable under study are unknown.
Here a ‘coarse model fitting’ means one may ignore the detail of the experimental transiogram
and only take care of its general trend and his/her confident personal knowledge by a
mathematical model. There is no doubt that different experts may choose different models
based on the experimental transiogram and their different personal knowledge about the study
area and the target variable (Figure 4). The more knowledge an expert has about the target
variable in the study area, the bettermodel he can choose. Here a bettermodel means it is closer
to the truth even though it appears to deviate a lot from the experimental one. For example, in
Figure 4, the transiogram model inferred from the dense sample set is used to represent the
‘truth’ that expert knowledge should approach; however, the transiogram models chosen by
experts 1 and 2 may have apparent deviations because of their poor knowledge, though these
models may better fit the unreliable experimental transiogram from the sparse sample set.

5. Sensitivity analysis

To test the sensitivity of Markov chain simulation to transiogrammodels derived in different
ways, we chose a relatively dense sample set (139 points) and a relatively sparse one
(47 points, thinned from the dense one) of a five-class categorical variable for case studies.

Figure 4. Different models to fit an experimental cross-transiogram estimated from a sparse sample
set (19 sample data). (A) Using a lag tolerance of 30-p length; (B) Using a lag tolerance of 20-p length.
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The study area is about 15 km2 and discretized into a 239 · 97 grid. The proportions of
different classes are different in each sample set and between the two sample sets (Table 1).
We estimated experimental transiograms from the two sample sets using different lag
tolerances (12 p length for the dense sample set and 12 and 20 p length for the sparse sample
set) and then inferred corresponding transiogram models by linear interpolation (i.e., inter-
polated transiogram models) and model fitting (i.e., fitted transiogram models). Six simula-
tions based on each set of transiogram models were conducted using the MCSS algorithm.
For each simulation, 100 realizations were generated to estimate averaged class proportions
(see Table 1) and the optimal prediction map.

5.1. Results based on the dense sample set

Figure 5 shows two subsets of transiogram models obtained through linear interpolation and
model fitting of corresponding experimental transiograms estimated from the dense sample set
with a lag tolerance of 12 p length, one subset for the largest class (class 1) and the other for the
smallest class (class 3). It can be seen that experimental transiograms headed by the largest
class have little fluctuation and thus can be well fitted by mathematical models such as the
exponential model, the spherical model, and the dampened hole-effect model. Therefore,
linear interpolation and mathematical model fitting make little difference in this case, whereas
the latter needs muchmore time and tedious adjustments, which may be unendurable when the
number of classes is large. It is worth mentioning here that the dampened hold-effect model
(Deutsch and Journel 1998, p. 26) is quite useful for approximately fitting the first peak of
experimental transiograms if the peak is not very sharp. For experimental transiograms headed
by the smallest class, some fluctuations appear but we still can use mathematical models to fit
well major features although having to miss some of them. Clearly under this situation, model
fitting has no advantages over linear interpolation, whereas the latter can be done quickly

Table 1. Class proportions in sample data sets and averaged from simulated realizations (100 per
simulation) based on transiogram models obtained by different ways.

Data source

Class proportion

Sample set Class 1 Class 2 Class 3 Class 4 Class 5

Dense
sample
set (139
points)

Samples 0.3597 0.1439 0.0576 0.0863 0.3525
Realizations, using interpolated

transiogram models, 12-p lag tolerance
0.3599 0.1452 0.0687 0.0963 0.3299

Realizations, using fitted transiogram
models, 12-p lag tolerance

0.3615 0.1465 0.0673 0.0958 0.3289

Sparse
sample
set (47
points)

Samples 0.4043 0.1064 0.0638 0.0213 0.4043
Realizations, using interpolated

transiogram models, 12-p lag tolerance
0.3995 0.1038 0.0721 0.0218 0.4028

Realizations, using interpolated
transiogram models, 20-p lag tolerance

0.4258 0.1265 0.0774 0.0175 0.3528

Realizations, using fitted transiogram
models with poor expert knowledge
(i.e., fitted transiogram models, 20-p
lag tolerance)

0.4295 0.1385 0.0720 0.0127 0.3474

Realizations, using fitted transiogram
models with perfect expert knowledge
(i.e., fitted transiogram models using
the dense sample set, 12-p lag
tolerance)

0.3634 0.1252 0.0780 0.0672 0.3662
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regardless of the number of involved transiograms. Note that sills of the fitted transiogram
models were set to the proportions of corresponding tail classes, which are quite identical with
the sills of corresponding experimental transiograms, as shown in Figure 5.

Figure 5. Two subsets of experimental transiograms of a five-class categorical variable and their models,
headed by the largest class (class 1, proportion 0.3597) and the smallest class (class 3, proportion 0.0576),
estimated from a dense sample set (139 points) using a lag tolerance of 12-p length.
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Because transiogram models obtained by linear interpolation and model fitting do not have
much difference in this case study, it is expected that simulated results using these two sets of
transiogram models are similar. This is verified by the simulated results, some of which are
shown in Figure 6. It can be seen that class patterns in optimal prediction maps of the two
simulations are basically the same (Figure 6: A0 vs. B0), and if the same random number
sequence is used class patterns in realizations of the two simulations are very similar (Figure 6:
A1 vs. B1, A2 vs. B2). Class proportions estimated from simulated realizations based on the two
different sets of transiogrammodels also basically have no difference (Table 1). But they do have
some deviation from the original class proportions (i.e., estimated from the sample data). This is
easy to understand because class proportions in simulated realizations are not only related to
transiogram models (mainly their sills) but also related to the spatial distributions of samples of
different classes. The relative underestimation of class 5 in simulations is probably because this
class tends to occur more frequently at boundaries (i.e., boundary effect).

5.2. Results based on the sparse sample set

For the sparse sample set, experimental transiogramswere estimated using two lag tolerances –
12 and 20 p length, as shown in Figure 7 for the subset headed by the largest class (class 5) and

Figure 6. Simulated results of a five-class categorical variable, based on the dense sample set (139
points). Column A: Using interpolated transiogram models. Column B: Using fitted transiogram
models. 1, 2, and 3 in map labels (e.g., A1, A2, and A3) refer to three different realizations. A0 and
B0 are optimal prediction maps based on maximum occurrence probabilities estimated from 100
simulated realizations.
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in Figure 8 for the subset headed by the smallest class (class 4), respectively. They were
interpolated and model-fitted. Because of the small number of samples, experimental transio-
grams estimated using the 12-p lag tolerance show strong fluctuations, especially for those
headed by small classes, which imply that these transiograms are less reliable. Increasing the
lag tolerance to 20 p length can obviously smooth the fluctuations, although the number of
measured transition probabilities also becomes smaller. Because of the fluctuations, the small
number of measured values, and the occurrence of zero values in experimental transiograms, it
is difficult to fit these experimental transiograms precisely using mathematical models. Thus,
as we proposed in the last section, a ‘coarse fitting’ to these experimental transiograms by
mathematical models usually can work well for simulation. Because the experimental transio-
grams with the 20-p lag tolerance are smoother, we use mathematical models to fit this set of
experimental transiograms, and the sills of models are set to the proportions of corresponding
tail classes as suggested for transiogram modeling (Li 2007a). It should be noted that class
proportions in the sparse sample set changed because of the reduced number of samples relative
to those in the dense sample set (Table 1). This change implies that the spatial correlation
information conveyed by sparse samples in a limited area may largely deviate from the truth.

Figure 7. A subset of experimental transiograms headed by a large class (class 5, proportion 0.4043),
estimated from a sparse data set (47 sample points) using different lag tolerances (12- and 20-p length),
and their models inferred using different methods (interpolation and model fitting) and different levels
of experts (poor expert and perfect expert). Here the perfect expert’s models (thin solid lines) are the
same as those inferred from the dense sample set, and the poor expert’s models (thick solid lines) are
those simply fitting the experimental transiograms estimated from the sparse sample set with the lag
tolerance of 20-p length.
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Simulated results using the two sets of interpolated transiogram models are shown in
Figure 9. It can be seen that simulated realizations based on the interpolated transiograms
measured with 12-p lag tolerance (Figure 9 column A) and those based on the interpolated
transiograms measured with 20-p lag tolerance (Figure 9 column B) show apparent difference in
their spatial patterns, particularly those parts related to both classes 2 and 5. Clearly class 2 is
always enclosed by class 5. This should result from the difference of experimental cross-
transiograms between classes 2 and 5. Checking the experimental transiograms, we did not
find any problem on p̂52ðhÞ, but indeed found a problem on p̂25ðhÞ. Figure 10 shows clearly that
the first measured transition probability value in p̂25ðhÞ is 1 for the 12-p lag tolerance but not for
the 20-p lag tolerance. This situation irrationally causes a large difference at the low lag section
between the two interpolated transiograms using 12- and 20-p lag tolerances. The reason should
be that class 2 samples are surrounded by class 5 samples in the sparse sample set and thus no
transitions from class 2 to other classes can be captured within a short lag distance. The
consequence is that class 2 is completely enclosed by class 5 in simulated patterns using that
interpolated transiogram. The occurrence of such a problemmaymean that the 12-p lag tolerance
is too small for estimating appropriate transition probabilities from the sparse sample set. It might

Figure 8. A subset of experimental transiograms headed by a small class (class 4, proportion 0.0213),
estimated from a sparse data set (47 sample points) using different lag tolerances (12- and 20-p length),
and their models inferred using different methods (interpolation and model fitting) and different levels
of experts (poor expert and perfect expert). Here the perfect expert’s models (thin solid lines) are the
same as those inferred from the dense sample set, and the poor expert’s models (thick solid lines) are
those simply fitting the experimental transiograms estimated from the sparse sample set with the lag
tolerance of 20-p length.
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alsomean that the 20-p lag tolerance is too large andmisses a special feature of the real pattern (if
the feature is real), because the use of the 20-p lag tolerance avoids the problem and consequently
destroys the enclosure feature in simulated patterns. Despite obvious difference in pattern details,
the general patterns in simulated realizations, especially those in optimal prediction maps, still
show some similarity to some extent. This might imply that the MCRF model is not very

Figure 9. Simulated results of a five-class categorical variable, based on the sparse sample set
(47 points). Column A: Using interpolated experimental transiograms measured with the lag tolerance
of 12-p length. Column B: Using interpolated experimental transiograms measured with the lag
tolerance of 20-p length. 1, 2, and 3 in map labels (e.g., A1, A2, and A3) refer to three different
realizations. A0 and B0 are optimal prediction maps based on maximum occurrence probabilities
estimated from 100 simulated realizations.

Figure 10. Experimental transiograms p̂25ðhÞ and p̂52ðhÞ, estimated from a sparse data set (47 sample
points) using different lag tolerances (12- and 20-p length), and their interpolated models.
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sensitive to the fluctuations of transiograms if the fluctuations are not irrational. Note that from
both simulations it can be seen that class 4 is always enclosed in class 1. This also corresponds
to the characteristics of experimental transiogram p̂41ðhÞ, where the first measured transition
probability value is 1 for both 12- and 20-p lag tolerances (see Figure 8). The generation of
such a feature is typically an advantage of transiograms as an asymmetric metric over
symmetric metrics such as indicator variogams. There are some obvious deviations between
the class proportions from the sparse sample set and those from the simulated realizations
using the interpolated transiograms with 20-p lag tolerance, which may be caused by the
excessive smoothing effect of the large lag tolerance.

The simulated results based on transiogram models fitting the 20-p lag tolerance
experimental transiograms are shown in Figure 11 column A. Although the model fitting
is very coarse, the simulated results using this set of transiogram models and those using
interpolated transiograms with 20-p lag tolerance (see Figure 9 column B) are quite similar in
patterns and class proportions. This indicates that the MCRF model is not much sensitive to
some fluctuations in transiogram models as long as their change trends are the same.

Figure 11. Simulated results of a five-class categorical variable, based on the sparse sample set (47
points). Column A: Using transiogram models fitting the experimental transiograms estimated from the
sparse sample set with the lag tolerance of 20-p length, representing the poor expert’s knowledge.
Column B: Using transiogram models fitting the experimental transiograms estimated from the dense
sample set with the lag tolerance of 12-p length, representing the perfect expert’s knowledge. 1, 2, and 3
inmap labels (e.g., A1, A2, andA3) refer to three different realizations. A0 and B0 are optimal prediction
maps based on maximum occurrence probabilities estimated from 100 simulated realizations.
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5.3. Results based on assumed expert knowledge

Precise model fitting to the experimental transiograms measured from the sparse sample set is
difficult and also unnecessary because of their unreliability. Thus, ‘coarse model fitting’ to these
experimental transiograms based on expert knowledge should do a better job, because expert
knowledge can be assumed to be more reliable than the experimental transiograms measured
from a small number of samples. Here an issue arises: How much valuable knowledge does an
expert (i.e., the modeler) have? Different experts may be at different levels in knowing the study
area: some may have very rich knowledge about the study area and thus can construct good
transiogrammodels even without considering much the experimental transiograms; some others
may have little knowledge about the study area and have to attempt to fit the unreliable
experimental transiograms with mathematical models based on the basic principles of transio-
gram modeling. For this reason, here we assume we have two experts, a ‘perfect’ one and a
‘poor’ one, to conduct the transiogram modeling with mathematical models. The perfect expert
knows the correct proportions of all classes (used to set model sills) and their spatial auto- and
cross-correlation structures (used to decide model types and ranges) in the study area. He or she
provides a set of transiogram models, which are thought to correctly reflect the truth and ignore
the unreliable experimental transiograms. Here we use the set of fitted transiogram models
inferred from the dense sample set to serve as the models provided by the perfect expert,
assuming that the dense sample set can perfectly reflect the spatial variability of the classes in
the study area. From Figures 7 and 8, it can be seen that the fitted transiogram models from the
dense sample set (i.e., the perfect expert’s models) sometimes largely deviate in sills, ranges, and
model types from the experimental transiograms measured from the sparse sample set, because
the sparse sample set does not reflect the truth in proportions and correlation structures of some
classes. The poor expert has no knowledge at all about the study area. All that he or she has is the
sparse sample set. Thus he or she calculates the class proportions and the experimental
transiograms (each has only several measured values because of the use of a large lag tolerance)
from the sample set and then he or she does his or her best to choose some mathematical models
to fit the experimental transiograms with the sills of these models being set to the proportions of
the corresponding tail classes. From Figures 7 and 8, one can see that the transiogram models
fitting the experimental transiograms (i.e., the poor expert’s models) may differ largely from the
perfect expert’s models in sills, ranges, and model types.

In the real world, amodeler’s expert knowledge about his study areamay not be so poor or so
rich as the two extreme cases assumed above. So when a modeler estimates the transiogram
models from a small number of samples, the quality of the models should fall between the above
two extreme cases. Here we just use these two extreme cases to test the response ofMCSS to the
difference between transiogram models. Columns A and B in Figure 11 show simulated results
using the poor expert’s transiogram models and the perfect expert’s transiogram models,
respectively. It can be seen that simulated realizations using these two different sets of transio-
grammodels have apparent differences in patterns. Although conditioning data are the same, the
patterns of realizations in column B are much more complex than those in column A and tend to
mimic the simulated realizations based on the dense sample set. One reason should be that the
perfect expert’s models effectively convey the spatial variation information of the variable into
the simulation. The second reason is that the class proportion information of the dense sample set
carried by the perfect expert’s transiogram models affects simulated realizations. Apparently the
smallest class, class 4, was reproduced in a larger proportion in the realizations in column B of
Figure 11. Table 1 also shows that the class proportions estimated from the realizations based on
the perfect expert’s transiogram models (i.e., the transiogram models inferred from the dense
sample set) are close to those of the dense sample set. However, the optimal maps based on
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maximum probabilities (Figure 11: A0 vs. B0) do not display such differences for the two
different sets of transiogram models. This is because the spatially certain information – the
conditioning samples and their locations—are the same for the two simulations.

6. Conclusions

The validity of linear interpolation for joint transiogram modeling is mathematically demon-
strated in this paper. The method can meet all the three constraint conditions for joint
transiogram modeling. So as long as transition probabilities are correctly measured from a
set of samples, linear interpolation can provide a valid set of transiogram models for MCRF
simulation of the corresponding categorical variable. The major advantage of linear interpola-
tion over model fitting is that the former can finish the transiogram-modeling process quickly
regardless of the number and complexity of experimental transiograms, whereas the latter can
be very tedious and time-consuming when the number of classes (or transiograms) is large.

When samples are abundant and experimental transiograms are reliable, linear interpola-
tion is satisfactory or even superior tomathematical model fitting because it is efficient and can
capture every small feature (i.e., peak and trough) of experimental transiograms. When
samples are relatively sparse, we still can obtain reliable experimental transiograms by
choosing a suitable lag tolerance so that linear interpolation can be used. When samples are
very sparse (or very few), experimental transiograms become erratic with only a fewmeasured
values within the useful lag distance. Under this situation, both linear interpolation and precise
model fitting do not make sense; therefore, we suggested using ‘coarse model fitting’ based on
expert knowledge to obtain approximate transiogram models. Here ‘coarse model fitting’
means that model fitting should mainly consider expert knowledge and the general trend of
experimental transiograms, and ignore their details because of their unreliability.

Our simulations of a five-class variable show that simulated results are similar for
interpolated and fitted transiogram models when samples are dense and experimental transio-
grams are in regular shapes. But in this case study they also do not show large differences
between these two kinds of transiogram models when samples are relatively sparse and a
suitable lag tolerance is chosen, which may indicate that Markov chain simulation is not very
sensitive to the difference in the detail of transiogrammodels as long as their change trends are
identical. A special finding is that MCRF can capture the class enclosure feature in simulated
results, which apparently should be attributed to the asymmetrical property of transiograms.
Such a feature may not be captured by conventional indicator geostatistics.

Our simulations also show that expert knowledge can play an important role in transio-
gram modeling and Markov chain simulation, especially when samples are sparse and
experimental transiograms cannot reflect the real spatial variation of the categorical variable
under study. Although model fitting is tedious because of the large number of experimental
transiograms involved in modeling a complex categorical variable, it actually becomes
relatively easier to do when the number of samples is small because expert knowledge has
to play a role and precise fitting to unreliable experimental transiograms becomes unnecessary.
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