
International Journal of Geographical Information Science
Vol. 26, No. 4, April 2012, 599–620

Modeling experimental cross-transiograms of neighboring landscape
categories with the gamma distribution

Weidong Lia,b*, Chuanrong Zhangb and Dipak K. Deyc

aCollege of Resource and Environmental Information, Huazhong Agricultural University, Wuhan,
China; bDepartment of Geography, University of Connecticut, Storrs, CT, USA; cDepartment of

Statistics, University of Connecticut, Storrs, CT, USA

(Received 19 August 2010; final version received 4 July 2011)

Effectively fitting the major features of experimental transiograms (or variograms)
is crucial in characterizing spatial patterns and reproducing them in geostatistical
simulations. Landscape patterns usually tend to contain neighboring structures. The
experimental cross-transiograms of frequent neighboring landscape categories nor-
mally demonstrate apparent peaking features at low lag distances – they first quickly
increase to a peak and then gradually flatten out. The flattening process may be smooth
or may be through one or more alternate attenuating troughs and peaks. While alternate
peaks and troughs may be a reflection of the cyclic occurrence of landscape categories,
the single peak or the first peak at low lag section should be a signal of the neighbor-
ing structure of two related categories. This is further proved by the peaking features of
some idealized transiograms calculated from single-step transition probability matrices.
To effectively fit the first peak, especially when it is the single one, we propose using the
gamma distribution function and the commonly used variogram models to form addi-
tive composite models. Cases of fitting experimental cross-transiograms of landscape
data (here soil types and land cover classes) show that the additive gamma-exponential
composite model works very well and may closely fit the single-peak features. Although
it has multiple parameters to set, model fitting can be performed manually by trial and
error. Other two composite models may provide alternatives for fine fitting of the root
section (i.e., the left side of the peak). These models may also be applicable to fitting
experimental variograms with similar features. We also reintroduce the multiplicative
composite hole-effect models proposed for variogram modeling by earlier researchers,
and test them on experimental cross-transiograms. It is found that composite hole-effect
models are not sufficiently flexible to effectively fit the peak shapes of experimental
cross-transiograms of neighboring categories, unless multiple peaks and troughs appear
in regular shapes and rhythms.

Keywords: landscape heterogeneity; neighboring categories; transiogram; gamma
distribution; spatial metric

1. Introduction

Categorization is a common way used to characterize and map the complex spatial het-
erogeneity of many spatial phenomena such as various landscapes (Robbins 2001, Hobbs
and McIntyre 2004). A categorical (or discrete) spatial variable, which characterizes the

*Corresponding author. Currently affiliated with the University of Connecticut. Email:
weidongwoody@gmail.com

ISSN 1365-8816 print/ISSN 1362-3087 online
© 2012 Taylor & Francis
http://dx.doi.org/10.1080/13658816.2011.603336
http://www.tandfonline.com

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

on
ne

ct
ic

ut
] 

at
 0

9:
21

 2
7 

M
ar

ch
 2

01
2 



600 W. Li et al.

spatial heterogeneity of a specific spatial phenomenon (e.g., land use/cover, soil type,
lithofacies, pollution grade, land quality grade, wind speed gradient), usually has multi-
ple or a number of categories (or classes). Among the multiple categories of a categorical
spatial variable, some may frequently occur as neighbors, that is, they may occur closely in
space. When two categories often occur closely, that means they associate with or depend
on each other strongly. In this study, we call such two categories neighboring categories
and their co-occurrence neighboring structure. Similar situation also occurs in categorical
temporal variables, such as the time series of landscape change. In this paper, however, we
focus only on categorical spatial variables.

Because of the complexity of spatial heterogeneity, the intraclass and interclass depen-
dencies (or correlations) among the categories of landscapes are also very complex (Turner
1989, Li and Reynolds 1993a, Pickett and Cadenasso 1995). A variety of spatial metrics,
such as the contagion index (Li and Reynolds 1993b, O’Neill et al. 1988) and the inter-
spersion and juxtaposition index (McGarigal and Marks 1995), have been proposed to
measure the dependencies of categories in landscape ecology in the recent two decades
(Riitters et al. 1995, Haines-Young and Chopping 1996, Wu et al. 2002, Palmer 2004,
Dietzel et al. 2005, Pijanowski et al. 2005, Dendoncker et al. 2008). Although single-step
transition probabilities have been often used to describe the spatial (or temporal) change of
land use/cover patterns (Pontius and Malanson 2005, Geertman et al. 2007, Almeida et al.
2008), the transiogram, which was proposed recently as a spatial measure for categorical
data, has its unique merits as a quantitative graphic measure (Li 2006, 2007a), and may
serve as a spatial metric for characterizing landscape heterogeneity (Li and Zhang 2011).
Transiograms are resolution-free and can indicate spatial (or temporal) auto- and cross-
correlation information at different lag distances. Similar to indicator variograms (Deutsch
and Journel 1998), which have been often used for categorical data in geostatistics, tran-
siograms measure auto and cross-correlations over a series of lag distances. However, as
transition probability diagrams, cross-transiograms are asymmetrical; that means they can
be more complex in shape than indicator variograms, which are covariance-based and
symmetrical in definition. Also as transition probability diagrams, transiograms are more
intuitive and interpretable than indicator variograms (Li 2007a). Thus, a transiogram essen-
tially provides an ideal two-point spatial measure for characterizing complex categorical
patterns.

A major use of transiograms is to provide correlation information to geostatistical
methods, such as the Markov chain geostatistics (Li 2007b, Li and Zhang 2007), that use
transition probabilities with different lags for conducting stochastic simulations of cate-
gorical fields. Markov chain geostatistics use Markov chain random field (MCRF) models
as local conditional probability estimators and continuous transiogram models as spatial
dependency descriptors of categories in geospatial processes. These transiogram models
may be fitted mathematical models or interpolated experimental transiograms. Note that
although linear interpolation was suggested as a way to obtain continuous transiogram
models from experimental transiograms for MCRF simulations, it is only recommended
as one alternative under the condition that sample data are sufficient to provide reliable
experimental transiograms (Li and Zhang 2010, 2011). Such a simple way may not be
applicable to other transition probability-based geostatistical methods such as the transition
probability-based indicator geostatistics extended from indicator kriging by Carle and Fogg
(1996), and it also eliminates the chance to use expert knowledge in constructing a tran-
siogram model. In addition, even if geostatistical simulation is not conducted, mathematical
model fitting of experimental transiograms may still be necessary for using transiograms
as independent spatial measures (similar to variograms) to characterize categorical spatial
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patterns, because the type and parameters of a mathematical model may be simple indices
of spatial patterns. These mean that effective mathematical model fitting of experimen-
tal transiograms is crucial to geostatistical simulation and pattern characterization of
categorical fields.

To some extent, transiograms are also similar to indicator variograms in shapes. But
they have opposite changing directions. While transiograms are always positive, cross
indicator variograms between mutually exclusive categories are negative. Quantitative rela-
tionships between transiograms (or transition probabilities) and indicator variograms also
could be established (Lou 1993, Carle and Fogg 1996). Therefore, the commonly used var-
iogram models, such as the linear, spherical, Gaussian, and exponential models (Goovaerts
1997), can be simply adapted for fitting experimental transiograms (Ritzi 2000, Li 2007a).
Experimental auto-transiograms usually have relatively simple shapes and they often tend
to be exponential with one or multiple ranges. So it is not difficult to use simple models
(e.g., exponential and spherical models) or their linear combinations (i.e., nested mod-
els) to fit them. However, experimental cross-transiograms can be very complex in their
shapes. A typical special feature is that some experimental cross-transiograms may first
have a peak, then gradually flatten out with increasing lag distance (Li 2007a). Such a peak
in an experimental cross-transiogram, if close to the origin, typically reflects the frequent
neighborship of two categories. Such kind of shapes cannot be captured by the commonly
used variogram models or even with their nested structures because these models increase
monotonically (Ma and Jones 2001). If there is one or a series of attenuated troughs and
peaks following the first peak, dampened hole-effect models may provide a good fit at
some situations. However, dampened hole-effect models cannot always fit well, because
the periodicity may not be regular, and the peaks (or troughs), particularly the first peak,
may be too high (or low) and too wide (or narrow) to fit (Ma and Jones 2001). If there is
no trough following the first peak, we find that no existing variogram model can be used
to fit such kind of experimental cross-transiograms with a single peak. The problem is that
neighborship (or called juxtaposition) is a normal, widely existing situation in categorical
spatial variables. Some categories tend to occur together mutually, and some categories
tend to occur aside the other categories unilaterally. These situations cause some of the
experimental cross-transiograms to have a peak at their low lag sections. To effectively
reproduce such kind of categorical patterns in geostatistical simulations or quantitatively
characterize them, it is necessary to develop proper transiogram models to fit experimental
cross-transiograms with this kind of shapes.

The gamma distribution has the characteristics of first peaking and then flattening out
(Rice 1995). Thus, it may provide an essential component in constructing composite tran-
siogram models for fitting the special peaking features. The objectives of this study are: (1)
to display the features of experimental transiograms, particularly the peaking features of
experimental cross-transiograms of neighboring categories, estimated from different data
sets; (2) to suggest a set of composite mathematical models for cross-transiogram model-
ing based on the gamma distribution; and (3) to demonstrate the fitting effectiveness of the
additive gamma-exponential composite model and the multiplicative cosine-exponential
composite model to the peaking features of experimental cross-transiograms. The pro-
posed models should also be applicable to fitting experimental variograms with similar
features. The rest of this paper is arranged as follows: We first display some experimen-
tal transiograms estimated from different data sets and prove the validity of the peaking
features appearing on some experimental cross-transiograms using idealized transiograms
in Section 2.In Section 3, we focus on exploring the gamma distribution and investigat-
ing how to combine the gamma distribution with the commonly used variogram models
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to fit the peaking features of experimental cross-transiograms of neighboring categories.
Then in Section 4, we introduce hole-effect models and show that some of the experimen-
tal cross-transiograms with hole effects may be fitted well by using the existing composite
hole-effect models, whereas others may not, due to the limitation of hole-effect models in
peak (or trough) heights and widths. Finally, we conclude this paper by recommending the
use of additive gamma distribution-based composite models.

2. Features of transiograms

2.1. The concepts of transiograms

The transiogram was proposed mainly as an accompanying spatial measure for the Markov
chain geostatistics (Li 2007a, Li and Zhang 2007). Let Z be a categorical variable with n
categories, defined in a state space S = (1, 2, . . ., n), and z be a specific category of Z at a
specific location x. A theoretical transiogram is defined as a transition probability function
over the lag distance h:

pij(h) = Pr(z(x + h) = j | z(x) = i) (1)

where both j and i represent categories (Li 2006, 2007a). An auto transiogram pii (h)
represents the self-dependence (i.e., auto-correlation) of a single category i, and a cross-
transiogram pij(h) (i �= j) represents the cross-dependence of category j on category i. Here,
category i is called the head class and category j is called the tail class. Note that pij(h) �=
pji(h) usually, because cross-transiograms are asymmetric.

In practice, one can estimate a transiogram directly from sample data by counting the
number of transitions from a category to itself or another category over a series of lag
distances using the following equation:

p̂ij(h) = Fij(h)∑n
k=1 Fik(h)

(2)

where Fij(h) represents the number of transitions from category i to category j at the lag dis-
tance h, and n is the total number of categories. The lag distance can be absolute distance
(e.g., meters or kilometers) or relative distance (e.g., numbers of pixel lengths for raster
data). Such a transiogram estimated directly from sample data is called an experimental
(or empirical) transiogram, and is usually denoted as p̂ij(h). To acquire reliable experimen-
tal transiograms from sparse samples, one needs to set a lag tolerance �h around each
specific lag distance value, which may be decided by users according to the density of
samples. If the variable Z is anisotropic, experimental transiograms may have to be esti-
mated directionally with a tolerance angle similar to the estimation of variograms (Deutsch
and Journel 1998, p. 49). Experimental transiograms are sequences of discontinuous tran-
sition probability values at different lag distances. However, continuous transiograms
are needed in geostatistical simulations. Thus, we need to infer continuous transiograms
from experimental ones through model fitting or using other ways (e.g., interpolation,
expert knowledge). Such continuous transiograms are called transiogram models or model
transiograms.

Transiograms are diagrams of transition probabilities with increasing lag distance. If
a one-step transition probability matrix (TPM) P(1) = [pij (1)] can be available, one even
can directly calculate transiograms from the TPM by its self-multiplication. That is, one
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can get n-step transition probabilities from one-step transition probabilities by calculating
the following equation:

P(n) = [pij (n)] = [P(1)]n = [pij(1)]n (3)

where n refers to the number of spatial steps. A series of transition probabilities from i
to j at different spatial steps (i.e., 1, 2, 3, . . ., n steps) form a transiogram with gaps of
one-step length. Such a transiogram is called an idealized transiogram because the above
calculation equation is based on the first-order stationary Markovian assumption, and tran-
siograms derived as such have idealized shapes. Similarly, if a two-step TPM is available,
one can also get a series of transition probabilities at multiple steps such as 2, 4, 6, 8, . . .,
2n using the similar way as the above equation. These transition probabilities at different
steps can also form transiograms, but with gaps of two-step lengths. Therefore, idealized
transiograms are not completely continuous curves.

Because TPMs are not always available (i.e., cannot be accurately estimated from irreg-
ular sample data), idealized transiograms are also not always available. Estimated from
samples with lag and angle tolerances, single-step transition probability values of experi-
mental transiograms are not accurate in lags and directions. However, because they are all
directly estimated from real data without presuming the first-order stationary Markovian
assumption, experimental transiograms as visual curves are able to reflect the global char-
acteristics of spatial heterogeneity. Examples in experimental transiograms and idealized
transiograms will be given in next subsections.

2.2. Experimental transiograms

From our experience, we find that experimental auto-transiograms basically decrease
monotonically with increasing lag distance. Although sometimes weak peaks and troughs
may appear, they are not obvious, and can be ignored. Thus, they can be fitted easily by the
commonly used models such as exponential and spherical models or their nested structures.
However, whereas some experimental cross-transiograms have the general monotonic trend
with increasing lag distance, others may show apparent peaking features – first quickly
increasing to a peak and then gradually flattening out. The flattening process has two dif-
ferent situations: one is a typical monotonic decrease, and the other is a decrease through
a series of attenuated troughs and peaks. The latter is similar to the dampened hole-effect
feature of some experimental variograms, which has been studied in geostatistics (e.g.,
Journel and Huijbregts 1978, Ma and Jones 2001, Pyrcz and Deutsch 2003). For the for-
mer, we find no literature in geostatistics to mention it in variogram modeling. However, in
transiogram modeling, this feature is too outstanding to be ignored.

Figure 1 shows some unidirectional experimental transiograms estimated from a soil
map of 9.6 × 9.6 km2 with 48 soil series, ever used in Li (2007a). It can be seen that
the experimental auto-transiograms are relatively simple in shapes compared with the
cross ones and tend to be exponential-shaped with multiple ranges or spherical-shaped
(Figure 1d). However, as shown in Figure 1a–c, experimental cross-transiograms are far
more complex in their shapes: some have peaking features, whereas others do not have.
Peaking features are especially outstanding on some transiograms in Figure 1a and b. Such
features should not be regarded as dubious signals caused by data problems. Typically, they
are reflections of the closely neighboring characteristics of some soilscape categories (i.e.,
soil types). Interestingly, in Figure 1c we find two cross-transiograms both having a large,
wide peak, which occurs some distance away from the origin. Although this also reflects
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Figure 1. Unidirectional experimental transiograms estimated from a soil map data set along the
east-to-west direction. Pixel size is 20 m × 20 m. Here p(i, j) refers to the experimental transiogram
p̂ij(h).

the neighborship of the two categories, the two categories are not very close neighbors. No
significant cyclic features can be found, although irregular fluctuations do appear on some
cross-transiograms.

Not only do the peaking features occur on unidirectional or anisotropic experi-
mental cross-transiograms but they also occur on some omnidirectional experimental
cross-transiograms. Figure 2 shows some omnidirectional experimental cross-transiograms
estimated from a large sample data set of 12,936-point data, thinned from the soil map
used for estimating Figure 1. It is clear that some experimental cross-transiograms reveal
the peaking features, with a high or low peak. Changing the lag tolerance from 3 pixel
lengths to 6 pixel lengths does not eliminate the peaking features, which means the peak-
ing features of the experimental cross-transiograms are not caused by data noise or errors
(Figure 3a). Again, the omnidirectional experimental auto-transiograms are close to be
exponential-shaped, but some obviously have multiple correlation ranges (Figure 3b).
In addition, experimental transiograms from land cover class data indicate the similar
features.

2.3. Idealized transiograms

To further prove that the peaking features appearing on some experimental cross-
transiograms are not dubious signals caused by data problems, in Figures 4 and 5 we
display some idealized transiograms calculated using one-step TPMs, which are computed
from soil and land cover map data. Because map data are exhaustive, we can directly
calculate unidirectional one-step TPMs, then further calculate idealized transiograms
by self-multiplications of a TPM. It can be seen from Figures 4 and 5 that idealized
transiograms have very smooth curves, and some idealized cross-transiograms still have
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Figure 2. Omnidirectional experimental cross-transiograms estimated from a large soil sample data
set of 12,936-point data with a lag tolerance of 3-pixel lengths.
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Figure 3. Omnidirectional experimental cross-transiograms estimated from a large soil sample data
set of 12,936-point data with a lag tolerance of 6-pixel lengths.

peaking features – first quickly peaking and then flattening out. The difference between
idealized and experimental cross-transiograms is that on the idealized cross-transiograms
with peaking features, only one single peak appears.

The special characteristics of idealized transiograms are not difficult to understand:
They are the reflections of the implicit assumptions behind the calculation method
(Equation (3)), which supposes the first-order Markovian assumption and assumes that the
data for estimating the single-step transition probabilities are spatially stationary, sufficient,
and obtained from an infinitely large area. With such assumptions, any experimental tran-
siogram features, caused by data nonstationarity, data insufficiency, and area limitation, are
removed from the idealized ones. Because a marked hole effect (i.e., a series of peaks and
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Figure 4. Some idealized transiograms calculated from a unidirectional TPM which is computed
from soil map data.
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Figure 5. Some idealized cross-transiograms calculated from a four-directional TPM which is
computed from land cover map data of seven classes.
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troughs) is the reflection of pseudo-periodical occurrences of the neighboring structure
of two categories, and the pseudo-periodicity is typically a kind of data nonstationarity,
there is no way for multiple peaks and troughs to appear on idealized transiograms. That
means no matter how the neighboring structures of two categories are distributed in space –
randomly, irregularly, or cyclically – what is reflected on idealized transiograms is just a
single smooth peak. Because they are caused by data insufficiency and area limitation (i.e.,
insufficient data pairs at some lag distances and limited patterns in a study area), irregular
fluctuations that generally appear on experimental transiograms do not occur on idealized
transiograms.

Idealized auto-transiograms are exactly exponential, as shown in Figure 4c. This is
decided by the first-order Markovian assumption. Idealized cross-transiograms show three
kinds of shapes: exponential, Gaussian, and gamma-featured (i.e., having a single peak
close to the origin). From the shapes of idealized cross-transiograms, it is easy to under-
stand the following three situations: if the neighboring structure of two categories occurs
randomly in space (which is much less possible in the real world), their experimental
cross-transiograms should be gamma-featured; if it occurs irregularly, their experimen-
tal cross-transiograms should still be gamma-featured because transiograms as global
spatial measures do not reflect local differences; but if the occurrence is periodical or
pseudo-periodical in space, their experimental cross-transiograms should typically have
hole-effect features. In general, the occurrence of the peaking features on some idealized
cross-transiograms implies that the occurrence of peaking features on some experimental
cross-transiograms is normal, and such peaking features can be real reflections of spatial
heterogeneity of landscapes rather than ill shapes caused by data problems if samples used
are not excessively sparse.

2.4. Comparison of experimental and idealized transiograms

Although idealized transiograms are smooth in shape, they are relatively simple because
of the implicit assumptions. Some idealized transiograms may approximately fit their cor-
responding experimental ones, but most may deviate a lot, as demonstrated in Figures 6
and 7. The deviation between an experimental cross-transiogram and its corresponding
idealized one is more obvious when a peaking feature occurs. They do fit at initial lag
distances nearby the first space step, but have no guarantee to fit at higher lag distances.
This means that idealized transiograms are not good enough to serve as transiogram mod-
els although they can help explain some features of the experimental ones when available.
Although idealized transiograms are seldom directly available, unless there is no data or no
sufficient data to estimate experimental transiograms (e.g., sometimes in hydrogeology), it
is not recommended to use idealized transiograms derived from expert-guessed TPMs in
geostatistical simulations.

Idealized transiograms are not truly continuous, as aforementioned. If they are calcu-
lated from one-step TPMs, they have gaps of a single pixel length. If they are calculated
from multistep TPMs, they have gaps of multiple pixel lengths. But it is easy to make them
continuous by interpolation if the gap is not too large, or even by model fitting given the
simplicity of their shapes.

3. Transiogram models with gamma distribution

3.1. Gamma distribution

In probability theory and statistics, gamma distribution is a two-parameter family of con-
tinuous probability distributions. It has a scale parameter β (beta) and a shape parameter
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Figure 6. Idealized transiograms and their corresponding experimental transiograms calculated
from land cover data.
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Figure 7. Idealized transiograms and their corresponding experimental transiograms calculated
from soil map data.

α (alpha). If α is an integer, then the distribution represents the sum of α independent
exponentially distributed random variables, each of which has a mean of β. Gamma dis-
tribution (probability density function) is right-skewed (i.e., positively skewed, the right
tail is longer) and bounded at zero. Like lognormal distribution, it is an alternative to be
considered for variables that seem to be highly skewed.

Gamma distribution has been used as a model in a range of disciplines, such as clima-
tology, where it is a workable model for rainfall, and financial services, where it is used for
modeling insurance claims and the size of loan defaults. It is frequently a probability model
for waiting times; for instance, in life testing, the waiting time until death is a random vari-
able that is frequently modeled with a gamma distribution (Hogg and Craig 1978). Gamma
distributions were fitted to rainfall amounts from different storms (Rice 1995). They were
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also used in landscape ecology, for example, to model species abundances (Plotkin and
Muller-Landau 2002), and in soil science, for example, to describe soilscape boundary
spacings (Burgess and Webster 1984).

The gamma distribution (probability density function) is given as

fα,β(x) = 1

�(α)βα
xα−1e− x

β (4)

where the gamma function G(α) is defined as

�(α) =
∞∫

0

tα−1e−tdt (5)

where α is the shape parameter, and β is the scale parameter, that is, the standard deviation
of the gamma distribution is proportional to β. In the gamma distribution, x and the param-
eters α and β must be positive. The mean and variance of the gamma distribution are αβ

and αβ2, respectively.
The shape of the gamma distribution is very flexible. Some examples of the gamma

distribution, scaled up by 5 (i.e., using x/5 to replace x in Equation (4), thus chang-
ing the function mean to 5αβ), are provided in Figure 8. One can see that when the
shape parameter α is set to one or less than one, the gamma distribution is a monotoni-
cally decreasing curve and looks like an exponential distribution (Figure 8a); when α is
greater than one, the gamma distribution becomes a right-skewed distribution curve, and
the peak height changes with both parameters (Figure 8b); and when α increases to a large
number and β keeps small, the gamma distribution even tends to be normally distributed
(Figure 8c).

In this study, what interests us is the flexible right-skewed shape of the gamma distri-
bution when the shape parameter α is greater than one, which is like the peaking features
of some experimental cross-transiograms, first increasing to a peak and then flattening out.
The difference is that experimental cross-transiograms will gradually flatten to or fluctuate
around their respective sills, whereas the gamma distribution gradually approaches to zero
after across a peak (Figure 9a). This implies that if we want to use the gamma distribution
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Figure 8. Gamma distributions with different alpha and beta parameters (scaled up by 5), denoted
as gamma(α, β) in the legend.
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Figure 9. The gamma distribution (a), the exponential model (b), and their additive composite
model (c).

to fit experimental transiograms, we have to add a simple function that has a sill to make
a composite model. In Figure 9, we show a composite model which adds an exponential
function (Figure 9b) to the gamma distribution function. The composite model demon-
strates the exact peaking feature we want for cross-transiogram modeling: It first quickly
increases to a peak and then flattens out to a stable sill (Figure 9c).

In addition, the cumulative gamma distribution function may also be used indepen-
dently to fit transiograms or variograms without the peaking or hole-effect features. It is
more flexible than the exponential and Gaussian models because the latter are actually spe-
cial cases of the cumulative gamma distribution. But this is beyond the focus of this study
and will not be addressed here.

3.2. Additive gamma-exponential composite model

The additive gamma-exponential composite model, as demonstrated by Figure 9c, may be
used to fit some experimental cross-transiograms. The exponential function has been used
as a variogram model (Goovaerts 1997) and also used as a transiogram model (Li 2007a,
Li et al. 2010). The exponential cross-transiogram model can be given as

pij(h) = c

[
1 − exp

(
−3h

d

)]
(6)

where h is the lag distance, c is the sill parameter, and d is the parameter of effective range.
For transiograms, the sill is theoretically equal to the proportion of the tail category j.
Thus, the additive gamma-exponential composite model we propose as a cross-transiogram
model can be mathematically expressed as

pij(h) = c

[
1 − exp

(−3h

d

)
+ w

1

�(α)βα

(
h

d

)α−1

exp

(−h

βd

)]
, α > 1, β > 0 (7)

where h replaces the x in the gamma distribution of Equation (4) as the lag distance.
This cross-transiogram model is relatively a little complex. It is composed of an expo-

nential cumulative distribution function and a gamma probability density function. It is
not like a nested variogram model which is composed of two or more commonly used
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variogram models, of which each has its own sill and range parameters. Except for the
shape parameter α and the scale parameter β of the gamma distribution function, it has
three other parameters, c, d, and w. Here c is still the sill parameter of the exponential
function, theoretically equal to the proportion of the tail category j. For the exponential
function component, d is the effective range parameter. But for the gamma distribution
function component, the use of d is just to put the gamma curve and the exponential curve
to the same spatial scale. As to w, it serves as a weight parameter so that we may adjust
the weight of the gamma distribution function component in the composite model. Note
that there is no explicit range parameter for the whole composite model. With these five
parameters, the additive gamma-exponential composite model can easily provide a good
fit to the peaking features of experimental cross-transiograms with different peak heights,
widths, and even shapes.

In Figures 10 and 11, we display some experimental cross-transiogram examples with
different characteristics of the peaking features and their fitted models. Parameters for each
transiogram model are provided in its chart. No commonly used variogram models or their
nested structures can be used to fit such kind of transiogram shapes. However, by adjust-
ing the five parameters, particularly the three parameters of α, β, and w with the gamma
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Figure 10. Some experimental cross-transiograms with a peak, estimated from a land cover data
set, and their models fitted by the additive gamma-exponential composite model.
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Figure 11. Some experimental cross-transiograms with a peak, estimated from a soil type data set,
and their models fitted by the additive gamma-exponential composite model.

distribution function, the proposed additive gamma-exponential composite model can fit all
of them very well. Even the peak shapes special as those in Figures 10c and 11a are well
fitted. Most of these experimental cross-transiograms have the shape of a quick peak first
and then flatten out. This is the special feature that reflects close neighborships. Although
the fitting was done manually, one can see that they are almost perfectly fitted. It should be
noted that it is far more important to precisely fit the low lag section (i.e., the part close to
the origin) than to precisely fit the high lag section, because usually only the low lag section
of a transiogram model is used in geostatistical simulations. Our fitting also emphasizes the
low lag section, for example, the lag section is less than 60 pixel lengths in the transiogram
examples here.

3.3. Other additive composite models with the gamma distribution

In Equation (7), we used an exponential function to work with the gamma distribution func-
tion. The Gaussian function and the spherical function, which have been commonly used
as basic variogram models (Goovaerts 1997), can also be added to the gamma distribu-
tion function to form additive composite models. The additive gamma-Gaussian composite
cross-transiogram model and the additive gamma-spherical composite cross-transiogram
model can be written as

pij(h) = c

[
1 − exp

(−3h2

d2

)
+ w

1

�(α)βα

(
h

d

)α−1

exp

(−h

βd

)]
, α > 1, β > 0 (8)

and
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Figure 12. Different gamma-based additive composite models with the same parameter setting.

pij(h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c

[
1.5

h

d
− 0.5

(
h

d

)3

+ w
1

�(α)βα

(
h

d

)α−1

exp

(−h

βd

)]
, x < d

c

[
1 + w

1

�(α)βα

(
h

d

)α−1

exp

(−h

βd

)]
, x ≥ d

, α > 1, β > 0

(9)

respectively, where the parameters are the same as those in Equation (7), except that d is
the actual range for the spherical function component. These two composite models should
generate similar results as those of the additive gamma-exponential composite model. The
difference exists in the shapes of the initial section of the cross-transiogram models, that
is, the left side of the peak (Figure 12). Similarly, one may consider forming other additive
composite models in a similar way. To precisely fit the initial section of experimental
cross-transiograms, different additive composite models based on the gamma distribution
function may be needed.

4. Comparison with hole-effect transiogram models

In geostatistics, the hole-effect refers to the nonmonotonic structures, particularly the alter-
nate peaks and troughs, occurring on variograms (David 1977). If the peaks and troughs
attenuate gradually, it is called dampened hole effect. These structures may be bounded by
a sill or occur without a sill, be dampened or undampened, and be isotropic or anisotropic
(Pyrcz and Deutsch 2003). Studies show that a marked hole effect in variograms is usually
the reflection of periodicity or cyclicity on spatial variability, which is a common and legit-
imate spatial characteristic in geology. Ignoring the nonmonotonic structures may result
in unrealistic heterogeneity models that do not reproduce the real patterns of variability
(Journel and Huijbregts 1978, Journel and Froidevaux 1982, Jones and Ma 2001, Pyrcz
and Deutsch 2003). However, hole effects were often ignored and the spherical model
was often fitted through the peaks and troughs of experimental variograms. One reason is
the doubt that experimentally observed hole effects may be dubious or sampling artifacts
(Journel and Huijbregts 1978), the other reason should be that the mathematical models
used to fit hole-effect variograms may not ensure the permissibility requirement of krig-
ing, and thus are regarded as not legitimate (Christakos 1984, Deutsch and Journel 1998).
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Whereas the first reason can be true sometimes when samples are very sparse, the second
reason, however, seems not a problem in Markov chain geostatistical simulations.

The spatial patterns of landscapes are even more complex due to various natural
and human impact factors. Therefore there is nothing strange for hole-effect features to
appear in experimental transiograms of landscape categories, as demonstrated in the sec-
ond section of this paper. Such features provide valuable information concerning the spatial
variability of landscapes. Clearly, they must be accounted for, if precise local estimations
of landscapes are required.

Figure 13 shows the hole-effect model and the dampened hole-effect model for
variogram modeling, provided in Deutsch and Journel (1998). The hole-effect model
(Figure 13a) is an adapted cosine function, expressed as

γ (h) = c

[
1 − cos

(
2π

h

a

)]
(10)

where c is the sill and a is the wavelength (i.e., the width of the first peak). This model may
be used with the commonly used variogram models such as the spherical model to construct
nested models for fitting nonattenuated hole-effect features of experimental variograms.
Nonattenuated hole effect is rarely seen in experimental cross-transiograms of multiclass
categorical variables, but may appear in binary variables. We will not explore it in this
paper. The dampened hole-effect model (Figure 13b) is actually a multiplicative cosine-
exponential composite model (Journel and Froidevaux 1982, Hohn 1988, Christakos 1992),
which has been used in signal processing (Papoulis 1977). Its characteristics were explored
by Ma and Jones (2001) in fitting hole-effect indicator variograms.

The dampened hole-effect model, that is, the multiplicative cosine-exponential
composite model, can be directly used as a transiogram model to fit experimental
cross-transiograms with similar hole-effect features. As a cross-transiogram model, the
multiplicative cosine-exponential composite model is given as follows:

pij(h) = c

[
1 − exp

(
−3h

d

)
cos

(
2π

h

a

)]
(11)
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Figure 13. Typical hole-effect models: (a) hole-effect model; (b) dampened hole-effect model.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

on
ne

ct
ic

ut
] 

at
 0

9:
21

 2
7 

M
ar

ch
 2

01
2 



International Journal of Geographical Information Science 615

T
ra

n
s
io

g
ra

m

Lag (× 25 m)

0

0

0.04

0.08

0.12

0.16

(c)

30 60 90 120 150

Sill: 0.086

Cosine-exp

Gamma-exp

p (5,4)

Range: 100

Wavelength: 72

0 20 40 60 80 100

0

0.05

0.1

0.15

(a)

0.2

0.25

Cosine-exp

Gamma-exp

p (3,2)

Sill: 0.144

Range: 55

Wavelength: 50

0 20 40 60 80 100
0

0.04

0.08

0.12

0.16

(b)

Cosine-exp

Gamma-exp

p (3,4)

Sill: 0.860

Range: 100

Wavelength: 60

0
0

0.2

0.4

0.6

0.8

(d)

20 40 60 80 100

Cosine-exp

Gamma-exp

p (3,1)

Sill: 0.360

Range: 40

Wavelength: 32

Figure 14. Fitting experimental cross-transiograms using the multiplicative cosine-exponential
composite models and the additive gamma-exponential composite models. Parameters are for models
fitted using the multiplicative cosine-exponential composite model.

where h is the lag distance, c is the sill, d is the effective range, and a is the wavelength of
the cosine function. Since the hole effect, that is, the alternate peaks and troughs appearing
on real experimental variograms or transiograms, is rarely regular, it is actually difficult
to fit a series of peaks and troughs. Considering the useful part of a transiogram model
for simulation is just the low lag section, we aim to fit only the first peak and trough of
experimental cross-transiograms using this composite model.

Figure 14 shows some experimental cross-transiograms from a small sparse soil data
set, and manually fitted transiogram models using the multiplicative cosine-exponential
composite model and the additive gamma-exponential composite model. It can be seen
that the composite hole-effect model may provide an approximate fit to some experimental
cross-transiograms. The transiogram models in Figure 14a and c are all good fits to the first
pair of peaks and troughs of experimental transiograms. Although the gamma-exponential
composite model is more powerful in fitting the first peak in experimental transiograms, it
cannot fit any troughs (see Figure 14c). However, if there is not any clear trough immedi-
ately following the first peak, the composite hole-effect model usually cannot work well,
because it is difficult to ensure the required height or width of the first peak, at the same
time avoiding the following trough in transiogram models (see Figure 14d). Under this
situation, it is better to use gamma-based composite models.

In Figure 15, we compare the fitting effectiveness of the multiplicative cosine-
exponential composite model and the additive gamma-exponential composite model with
some experimental cross-transiograms estimated from large data sets. Here all model fitting
is performed manually by trial and error. It can be seen that if there is only a single peak
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Figure 15. Comparison of the additive gamma-exponential composite model and the multiplicative
cosine-exponential composite model in fitting experimental cross-transiorgams.

without apparent troughs, the cosine-exponential model is generally improper, whereas the
gamma-exponential model works almost perfectly (see Figure 15a–c). The simple spher-
ical model may fit at the root part but is unacceptable here due to its neglect of the
peak (Figure 15a). Sometimes even if there is a series of peaks and troughs, the cosine-
exponential model still has difficulty to effectively fit the shape of the first peak, as shown
in Figure 15d where the experimental cross-transiogram is from a binary data set. Under
this situation, if one just wants to use the low lag section of the transiogram model, using
the gamma-exponential model is still a better choice because it is sufficiently flexible to
provide a better fit to the first peak (Figure 15d).

Ma and Jones (2001) also provided two other cosine-based composite variogram mod-
els with attenuating hole effects. One is the multiplicative cosine-Gaussian composite
model, which is written here for transiogram modeling as

pij (h) = c

[
1 − exp

(
−3h2

d2

)
cos

(
2π

h

a

)]
, (12)

where the parameters are as in the model (Equation (11)). The other one is the multiplica-
tive cosine-spherical composite model, which was unfortunately mistakenly written (see
Ma and Jones 2001, p. 639). The correct form of the model for transiogram modeling is
given here as

pij (h) =
⎧⎨
⎩ c

[
1 −

(
1 −

(
1.5

h

d
− 0.5

(
h

d

)3
))

cos

(
2π

h

a

)]
, x < d

c, x ≥ d

(13)
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Figure 16. Different cosine-based multiplicative composite models with the same parameter
setting.

where the parameters are as in the model (Equation (11)), except that d here is the actual
range. These cosine-based composite models attenuate the sinusoidal amplitudes with
increasing lag distance. However, their amplitudes differ. Given the same parameter values,
the peak heights of the cosine-Gaussian model are highest, those of the cosine-exponential
model are lowest, and the cosine-spherical model generally loses cyclicity faster than oth-
ers (Figure 16). Similar to model (11), models (12) and (13) can be used to fit experimental
cross-transiograms with hole effects. The main limitations for cosine-based multiplicative
composite models are that it is often difficult to adjust their peak heights and widths to
desirable conditions, and the Gaussian-shaped root sections caused by the cosine function
(see Figure 16) often do not fit experimental transiograms (or variograms) well. These
unidealities can also be seen from fitting cases in Ma and Jones (2001). However, to fit
more than one peak and trough in experimental transiograms, we need these composite
hole-effect models.

5. Conclusions

The features of transiograms of spatial categories, particularly frequent neighboring
category pairs, are demonstrated. Some experimental cross-transiograms indicate appar-
ently a peak at low lag distances. The peak is usually too much above the sill of the
cross-transiogram to ignore. It often simply flattens out without a following trough, but
sometimes may be followed by some, usually attenuating, troughs and peaks. Whereas
the latter situation may be caused by the cyclic occurrence of neighboring structures in
landscape categories, similar as that found in geology where spatial patterns may be more
regular, the former situation should result from the pseudo-random distribution of neigh-
boring structures, which is common in natural landscapes. This can be proved by the
corresponding idealized transiograms calculated from one-step TPMs. Existing hole-effect
models are not flexible enough to effectively fit these kinds of cross-transiograms.

We propose using the gamma distribution function and the commonly used variogram
(or transiogram) models to form additive composite models for fitting such kinds of
experimental transiograms, and provide three such models. Fitting cases of experimen-
tal cross-transiograms of landscape data (i.e, soil types and land cover classes) show that
the additive gamma-exponential composite model works very well and may fit closely the
single-peak features. Apparently, the proposed composite models are also applicable to
fitting experimental indicator variograms with similar features. Although it has five param-
eters to set, model fitting can be performed manually by trial and error. If a software tool
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with moving buttons of parameters (mainly the alpha, beta, and weight parameters) could
be developed, the parameter-setting burden would be released. An unideality of gamma-
based composite models is that we cannot set the range parameter of a whole composite
model because it is not explicit. We also reintroduce the composite hole-effect models
proposed for variogram modeling by earlier researchers (see Ma and Jones 2001) and
test them on experimental cross-transiograms. It is found that composite hole-effect mod-
els have some obvious limitations in effectively fitting the peak shapes of experimental
cross-transiograms of neighboring categories.

On the basis of the investigations made in this study, we make the following rec-
ommendations in modeling the peaking features of transiograms: (1) if an experimental
cross-transiogram is single-peaked (i.e., no other apparent peaks and troughs), use gamma-
based additive composite models; (2) if one just wants a better fit to the first peak, use
gamma-based additive composite models rather than hole-effect models; (3) if one needs
to fit at least the first pair of regular peaks and troughs, use cosine-based multiplicative
composite hole-effect models, which often can do a good job. However, to fit multiple
peaks and troughs with irregular sizes, it is better to use nonparametric methods (Shapiro
and Botha 1991, Genton and Gorsich 2002). In addition, it should be pointed out that for
peaks or troughs located far away from the origin it is not only difficult but also useless to
fit them.
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